Local response dispersion method in periodic systems: Implementation and assessment

We report the implementation of the local response dispersion (LRD) method in an electronic structure program package aimed at periodic systems and an assessment combined with the Perdew–Burke–Ernzerhof (PBE) functional and its revised version (revPBE). The real‐space numerical integration was implemented and performed exploiting the electron distribution given by the plane‐wave basis set. The dispersion‐corrected density functionals revPBE+LRD was found to be suitable for reproducing energetics, structures, and electron distributions in simple substances, molecular crystals, and physical adsorptions. © 2014 Wiley Periodicals, Inc.

[1]  Hiromi Nakai,et al.  Self‐consistent field treatment and analytical energy gradient of local response dispersion method , 2013 .

[2]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[3]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[4]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[5]  K. Seki,et al.  Theoretical study of n-alkane adsorption on metal surfaces , 2004 .

[6]  A. Tkatchenko,et al.  Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. , 2013, The Journal of chemical physics.

[7]  I. Hamada van der Waals density functional made accurate , 2014 .

[8]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[9]  H. Nakai,et al.  Assessment of local response dispersion method for open-shell systems , 2013 .

[10]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[11]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[12]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[13]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[14]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[16]  Hiromi Nakai,et al.  Local response dispersion method. II. Generalized multicenter interactions. , 2010, The Journal of chemical physics.

[17]  D. Losee,et al.  Thermal-Expansion Measurements and Thermodynamics of Solid Krypton , 1968 .

[18]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[19]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[20]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[21]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[22]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[23]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[24]  H. Ogasawara,et al.  Bonding of saturated hydrocarbons to metal surfaces. , 2003, Physical review letters.

[25]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[26]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[27]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[28]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[29]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[30]  A. Tkatchenko,et al.  Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. , 2012, The Journal of chemical physics.

[31]  D. Losee,et al.  Measurements of Lattice Constant, Thermal Expansion, and Isothermal Compressibility of Neon Single Crystals , 1967 .

[32]  S. Grimme,et al.  Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. , 2011, Journal of chemical theory and computation.

[33]  Takeshi Sato,et al.  Long‐range corrected density functionals combined with local response dispersion: A promising method for weak interactions , 2013, J. Comput. Chem..

[34]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[35]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[36]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[37]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[38]  B. Koel,et al.  Desorption energies of linear and cyclic alkanes on surfaces: anomalous scaling with length , 2004 .

[39]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[40]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[41]  Hiromi Nakai,et al.  Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.

[42]  T. Van Voorhis,et al.  Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism. , 2009, The Journal of chemical physics.

[43]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[44]  D. Langreth,et al.  Adsorption of n -butane on Cu(100), Cu(111), Au(111), and Pt(111): Van der Waals density-functional study , 2010 .

[45]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[46]  A. Otero-de-la-Roza,et al.  A benchmark for non-covalent interactions in solids. , 2012, The Journal of chemical physics.

[47]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[48]  H. Nakai,et al.  Extension of local response dispersion method to excited-state calculation based on time-dependent density functional theory. , 2012, The Journal of chemical physics.

[49]  A. Becke,et al.  Van der Waals Interactions in Density-Functional Theory: Rare-Gas Diatomics. , 2009, Journal of chemical theory and computation.

[50]  A. Tkatchenko,et al.  Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. , 2011, Journal of chemical theory and computation.

[51]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[52]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[53]  B. D. Kay,et al.  n-alkanes on Pt(111) and on C(0001)Pt(111): chain length dependence of kinetic desorption parameters. , 2006, The Journal of chemical physics.

[54]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[55]  G. Scoles,et al.  Energetics and Kinetics of the Physisorption of Hydrocarbons on Au(111) , 1998 .

[56]  Kyuho Lee,et al.  Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. , 2009, Journal of chemical theory and computation.

[57]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[58]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[59]  Kimihiko Hirao,et al.  Long‐range corrected functionals satisfy Koopmans' theorem: Calculation of correlation and relaxation energies , 2013, J. Comput. Chem..

[60]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[61]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.