Runaway breakdown and electric discharges in thunderstorms

This review concerns the theory of the avalanche multiplication of high-energy (0.1 – 10 MeV) electrons in a neutral material, a newly discovered phenomenon known as runaway breakdown (RB). In atmospheric conditions RB takes place at electric fields an order of magnitude weaker than those needed for normal breakdown in air. Experimental work of the past few years has shown that RB determines the maximum electric field strength in thunderclouds and is behind a variety of phenomena newly observed in thunderstorm atmosphere, such as giant high-altitude discharges between thunderclouds and the ionosphere, anomalous amplifications of X-ray emission, intense bursts of gamma radiation, etc. These phenomena are becoming increasingly active areas of study. A necessary condition for the occurrence of runaway avalanche is the presence of high energy seed electrons. In the atmosphere, these are cosmic ray secondary electrons. Therefore, the observed effects reflect the close relationship between cosmic rays and electrodynamic processes in the thunderstorm atmosphere. The first laboratory results on RB are also presented. Further studies in this area may be of interest for high-current electronics.

[1]  R. Nemzek,et al.  Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System , 1990, Science.

[2]  G. Bazilevskaya,et al.  On The Stratospheric Measurements of Cosmic Rays , 1998 .

[3]  H. Bethe,et al.  Experimental Nuclear Physics , 1953 .

[4]  A. Litvak,et al.  REVIEWS OF TOPICAL PROBLEMS: Artificially ionized region as a source of ozone in the stratosphere , 2000 .

[5]  R. Roussel-Dupre,et al.  Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies , 1998 .

[6]  U. Inan,et al.  Recovery signatures and occurrence properties of lightning‐associated subionospheric VLF perturbations , 2000 .

[7]  B. Smirnov Observational properties of ball lightning , 1992 .

[8]  E. Williams,et al.  Sprites, ELF Transients, and Positive Ground Strokes , 1995, Science.

[9]  Gurevich,et al.  Kinetic theory of runaway air breakdown. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  W. D. Rust,et al.  X‐ray pulses observed above a mesoscale convective system , 1996 .

[11]  Basil Ferdinand Jamieson Schonland,et al.  Progressive lightening. VI , 1935, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[13]  H. Knoepfel,et al.  Runaway electrons in toroidal discharges , 1979 .

[14]  R. D. Hill Investigation of electron runaway in lightning , 1963 .

[15]  R. Roussel-Dupre,et al.  First observations of runaway breakdown phenomenon in laboratory experiments , 1999 .

[16]  L. Pekárek,et al.  IONIZATION WAVES (STRIATIONS) IN A DISCHARGE PLASMA , 1968 .

[17]  P. Pokrevsky,et al.  Ion balance equation in the atmosphere , 1997 .

[18]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[19]  W. Lyons Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video , 1994 .

[20]  J. Fisher UPWARD DISCHARGES ABOVE THUNDERSTORMS , 1990 .

[21]  U. Inan,et al.  Subionospheric VLF “imaging” of lightning‐induced electron precipitation from the magnetosphere , 1990 .

[22]  C T R Wilson,et al.  The electric field of a thundercloud and some of its effects , 1924 .

[23]  Bernard Vonnegut,et al.  Recent observations of lightning discharges from the top of a thundercloud into the clear air above , 1989 .

[24]  L. Babich,et al.  New data on space and time scales of relativistic runaway electron avalanche for thunderstorm environment: Monte Carlo calculations , 1998 .

[25]  G. Shaw BACKGROUND COSMIC COUNT INCREASE ASSOCIATED WITH THUNDERSTORMS. , 1967 .

[26]  S. Mende,et al.  Time resolved sprite imagery , 1995 .

[27]  Y. Raǐzer,et al.  PHYSICS OF OUR DAYS: The mechanism of lightning attraction and the problem of lightning initiation by lasers , 2000 .

[28]  W. D. Rust,et al.  Electric field magnitudes and lightning initiation in thunderstorms , 1995 .

[29]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[30]  K. B. Mitchell Fluorescence Efficiencies and Collisional Deactivation Rates for N2 and N2+ Bands Excited by Soft X Rays , 1970 .

[31]  T. Bell,et al.  A two‐dimensional model of runaway electron beams driven by quasi‐electrostatic thundercloud fields , 1997 .

[32]  Umran S. Inan,et al.  Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes , 1999 .

[33]  Richard J. Blakeslee,et al.  A cloud-to-space lightning as recorded by the space shuttle payload-bay TV cameras , 1992 .

[34]  H. Carlson,et al.  Generation of electron–positron pairs in runaway breakdown , 2000 .

[35]  R. Nemzek,et al.  Fast low‐level light pulses from the night sky observed with the SKYFLASH program , 1993 .

[36]  S. Cecchini,et al.  Gamma‐ray bursts of atmospheric origin in the MeV energy range , 2000 .

[37]  B. Schonland Thunder-storms and the penetrating radiation , 1930 .

[38]  G. Mesyats,et al.  Pulsed nanosecond electric discharges in gases , 1972 .

[39]  E. C. Halliday,et al.  Thunderstorms and the penetrating radiation , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  T. Bell,et al.  Blue jets produced by quasi‐electrostatic pre‐discharge thundercloud fields , 1996 .

[41]  Vladislav Mazur,et al.  Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash , 1995 .

[42]  Juan Alejandro Valdivia,et al.  Runaway electrons in the atmosphere in the presence of a magnetic field , 1996 .

[43]  R. Roussel-Dupre,et al.  Nonuniform runaway air-breakdown , 1994 .

[44]  Xuan-Min Shao,et al.  Observations of lightning phenomena using radio interferometry , 1994 .

[45]  R. Roussel-Dupre,et al.  High altitude discharges and gamma‐ray flashes: A manifestation of runaway air breakdown , 1996 .

[46]  G. Milikh,et al.  Generation of X-rays due to multiple runaway breakdown inside thunderclouds , 1999 .

[47]  R. R. Daniel,et al.  Cosmic-ray-produced electrons and gamma rays in the atmosphere , 1974 .

[48]  H. Carlson,et al.  Kinetic theory of runaway breakdown in inhomogeneous thundercloud electric field , 2001 .

[49]  W. D. Rust,et al.  Electrical structure and updraft speeds in thunderstorms over the southern Great Plains , 1995 .

[50]  D. Revelle,et al.  Meteor Trails and Columniform Sprites , 2000 .

[51]  P. Stubbe,et al.  Simulation of the strong lightning pulse penetration into the lower ionosphere , 1996 .

[52]  L. Babich,et al.  REVIEWS OF TOPICAL PROBLEMS: High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons , 1990 .

[53]  G. Davidson,et al.  Optical Radiation from Nitrogen and Air at High Pressure Excited by Energetic Electrons , 1964 .

[54]  V. Ginzburg,et al.  Nonlinear phenomena in a Plasma located in an alternating electromagnetic field , 1960 .

[55]  K. Zybin,et al.  Kinetic equation for high energy electrons in gases , 1998 .

[56]  Glenn E. Shaw,et al.  Ground‐based search for X rays generated by thunderstorms and lightning , 1996 .

[57]  R. Roussel-Dupre,et al.  Optical characteristics of red sprites produced by runaway air breakdown , 1998 .

[58]  David M. Suszcynsky,et al.  Gamma‐ray emissions observed in a thunderstorm anvil , 2000 .

[59]  W. D. Rust,et al.  Initial results from simultaneous observation of X‐rays and electric fields in a thunderstorm , 1996 .

[60]  Umran S. Inan,et al.  γ‐Ray emission produced by a relativistic beam of runaway electrons accelerated by quasi‐electrostatic thundercloud fields , 1996 .

[61]  Y. Raǐzer,et al.  Reviews of Topical Problems: Breakdown and Heating of Gases Under the Influence of a Laser Beam , 1966 .

[62]  Eugene M. Wescott,et al.  Observations of upper atmospheric optical flashes recorded from an aircraft , 1993 .

[63]  K. Zybin,et al.  Intensive X-ray emission bursts during thunderstorms , 2000 .

[64]  Umran S. Inan,et al.  Characteristics of mesospheric optical emissions produced by lightning discharges , 1999 .

[65]  Umran S. Inan,et al.  Runaway electrons as a source of red sprites in the mesosphere , 1995 .

[66]  Matthew J. Heavner,et al.  Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets , 1995 .

[67]  P. L. Hartman NEW MEASUREMENTS OF THE FLUORESCENCE EFFICIENCY OF AIR UNDER ELECTRON BOMBARDMENT. , 1968 .

[68]  T. E. Nelson,et al.  New high-resolution ground-based studies of sprites , 1996 .

[69]  R. Roussel-Dupre,et al.  On the temporal evolution of red sprites: Runaway theory versus data , 1999 .

[70]  G. Mesyats,et al.  REVIEWS OF TOPICAL PROBLEMS: Pulse discharges in gases under conditions of strong ionization by electrons , 1978 .

[71]  Juan Alejandro Valdivia,et al.  Model of red sprites due to intracloud fractal lightning discharges , 1998 .

[72]  R. Roussel-Dupre,et al.  Kinetic equation for high energy electrons in gases (Physics Letters A 237 (1998) 240) , 1998 .

[73]  M. P. McCarthy,et al.  Further observations of X-rays inside thunderstorms , 1985 .

[74]  K. Eack Balloon‐borne x‐ray spectrometer for detection of x rays produced by thunderstorms , 1996 .

[75]  D. Pozar Microwave Engineering , 1990 .

[76]  U. Inan,et al.  Sprites triggered by negative lightning discharges , 1999 .

[77]  J. Clay,et al.  High energy electrons produced in a thunderstorm , 1952 .

[78]  R. Roussel-Dupre,et al.  Optical characteristics of blue jets produced by runaway air breakdown, simulation results , 1998 .

[79]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[80]  B. Vonnegut,et al.  Observations of lightning in the stratosphere , 1995 .

[81]  T. Bell,et al.  Sprites as Luminous Columns of Ionization Produced by Quasi-Electrostatic Thundercloud Fields , 1996 .

[82]  D. Whitmire,et al.  Search for high-energy radiation near lightning strokes , 1979 .

[83]  Aleksandr V. Gurevich,et al.  On runaway breakdown and upward propagating discharges , 1996 .

[84]  I. Marshak Reviews of Topical Problems: Strong-Current Pulse (spark) Discharges in Gas, Used in Pulsed Light Sources , 1962 .

[85]  D. Hampton,et al.  Preliminary results from the Sprites94 aircraft campaign: 1 , 1995 .

[86]  S. V. Kostyuchenko,et al.  Fast ionisation waves under electrical breakdown conditions , 1994 .

[87]  REVIEWS OF TOPICAL PROBLEMS: Small-scale structure of dark matter and microlensing , 1997, astro-ph/9801314.

[88]  T. Bell,et al.  Trapped energetic electron curtains produced by thunderstorm driven relativistic runaway electrons , 2000 .

[89]  C. Wilson A theory of thundercloud electricity , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[90]  R. Roussel-Dupre,et al.  Simulations of high-altitude discharges initiated by runaway breakdown , 1998 .

[91]  G. M. Milikh,et al.  Red sprites: Lightning as a fractal antenna , 1997 .

[92]  Cheng-shang Chang,et al.  On the physics of high altitude lightning , 1995 .

[93]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[94]  M. Taylor,et al.  Video and Photometric Observations of a Sprite in Coincidence with a Meteor-triggered Jet Event , 1999 .

[95]  E. Appleton,et al.  Sources of Atmospherics and Penetrating Radiation , 1933, Nature.

[96]  Aleksandr V. Gurevich,et al.  Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers , 1999 .

[97]  J. Valdivia,et al.  Model of X-ray emission and fast preconditioning during a thunderstorm , 1997 .

[98]  V. V. Osipov,et al.  Self-sustained volume discharge , 2000 .

[99]  C. Rodger,et al.  Modeling the relaxation of red sprite plasma , 1999 .