Three-dimensional optical holography using a plasmonic metasurface

Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.

[1]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[2]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[3]  Yeshaiahu Fainman,et al.  Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation. , 2005, Optics letters.

[4]  Wesley I. Sundquist,et al.  Good to CU , 2003, Nature.

[5]  Qiaofeng Tan,et al.  Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination , 2012 .

[6]  David R. Smith,et al.  Infrared metamaterial phase holograms. , 2012, Nature materials.

[7]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[8]  David S. Monaghan,et al.  Digital Holographic Capture and Optoelectronic Reconstruction for 3D Displays , 2010, Int. J. Digit. Multim. Broadcast..

[9]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[10]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[11]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[12]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[13]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[14]  S. Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapour deposition. , 2008, Nature materials.

[15]  Tianhua Feng,et al.  Wave front engineering from an array of thin aperture antennas. , 2012, Optics express.

[16]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[17]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[18]  R. Dennis Distribution Patterns in European Basidio-mycetes with Reference to Some British Species , 1948, Nature.

[19]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[20]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[21]  V. Shalaev Optical negative-index metamaterials , 2007 .

[22]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[23]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[24]  C. Barsi,et al.  Imaging through nonlinear media using digital holography , 2009 .

[25]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[26]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[27]  A. Tünnermann,et al.  Photonics: Spatial and Spectral Light Shaping with Metamaterials (Adv. Mater. 47/2012) , 2012 .

[28]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[29]  Haider Butt,et al.  Carbon Nanotube Based High Resolution Holograms , 2012, Advanced materials.

[30]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[31]  D. Grier A revolution in optical manipulation , 2003, Nature.

[32]  Yu-Hui Chen,et al.  Wavefront shaping of infrared light through a subwavelength hole , 2012, Light: Science & Applications.

[33]  Nicolas C. Pégard,et al.  Optimizing holographic data storage using a fractional Fourier transform. , 2011, Optics letters.

[34]  D. Psaltis,et al.  Non-volatile holographic storage in doubly doped lithium niobate crystals , 1998, Nature.

[35]  Ming Lun Tseng,et al.  Three-Dimensional Plasmonic Micro Projector for Light Manipulation , 2012, Advanced materials.

[36]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[37]  Weiping Cai,et al.  Plasmonic holographic imaging with V-shaped nanoantenna array. , 2013, Optics express.

[38]  John A. Rogers,et al.  Three‐Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks , 2004 .

[39]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[40]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[41]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[42]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[43]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[44]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[45]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[46]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[47]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[48]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[49]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[50]  Ido Dolev,et al.  Surface-plasmon holographic beam shaping. , 2012, Physical review letters.

[51]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[52]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[53]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[54]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[55]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[56]  M. Moharam,et al.  Limits of scalar diffraction theory for diffractive phase elements , 1994 .

[57]  D. Gabor A New Microscopic Principle , 1948, Nature.