Orthogonal Array-Based Latin Hypercubes

Abstract In this article, we use orthogonal arrays (OA's) to construct Latin hypercubes. Besides preserving the univariate stratification properties of Latin hypercubes, these strength r OA-based Latin hypercubes also stratify each r-dimensional margin. Therefore, such OA-based Latin hypercubes provide more suitable designs for computer experiments and numerical integration than do general Latin hypercubes. We prove that when used for integration, the sampling scheme with OA-based Latin hypercubes offers a substantial improvement over Latin hypercube sampling.

[1]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[2]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[3]  R. C. Bose,et al.  Orthogonal Arrays of Strength two and three , 1952 .

[4]  H. D. Patterson The Errors of Lattice Sampling , 1954 .

[5]  G. Box,et al.  A Basis for the Selection of a Response Surface Design , 1959 .

[6]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[7]  C. Radhakrishna Rao Some Combinatorial Problems of Arrays and Applications to Design of Experiments††Paper read at the International Symposium on Combinatorial Mathematics and its Applications, Fort Collins, Colorado, September 1971. , 1973 .

[8]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[9]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[10]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[11]  Jerome Sacks,et al.  Some Model Robust Designs in Regression , 1984 .

[12]  C. Nachtsheim Orthogonal Fractional Factorial Designs , 1985 .

[13]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[14]  Harald Niederreiter,et al.  Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .

[15]  C. F. J. Wu Construction of $2^m4^n$ Designs via a Grouping Scheme , 1989 .

[16]  J. Sacks,et al.  A system for quality improvement via computer experiments , 1991 .

[17]  Changbao Wu,et al.  An Approach to the Construction of Asymmetrical Orthogonal Arrays , 1991 .

[18]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .