NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part I: Algorithm Description

Abstract New methods and software for cloud detection and classification at high and midlatitudes using Advanced Very High Resolution Radiometer (AVHRR) data are developed for use in a wide range of meteorological, climatological, land surface, and oceanic applications within the Satellite Application Facilities (SAFs) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), including the SAF for Nowcasting and Very Short Range Forecasting Applications (NWCSAF) project. The cloud mask employs smoothly varying (dynamic) thresholds that separate fully cloudy or cloud-contaminated fields of view from cloud-free conditions. Thresholds are adapted to the actual state of the atmosphere and surface and the sun–satellite viewing geometry using cloud-free radiative transfer model simulations. Both the cloud masking and the cloud-type classification are done using sequences of grouped threshold tests that employ both spectral and textural features. The cloud-type classification div...

[1]  Karl-Göran Karlsson,et al.  NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part II: Tuning and Validation , 2005 .

[2]  Jean-Noël Thépaut,et al.  An improved general fast radiative transfer model for the assimilation of radiance observations , 2004 .

[3]  K. T. Kriebel,et al.  The cloud analysis tool APOLLO: Improvements and validations , 2003 .

[4]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[5]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[6]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[7]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[8]  Richard J. Murphy,et al.  A Bayesian Cloud Mask for Sea Surface Temperature Retrieval , 1999 .

[9]  M. Derrien,et al.  Automatic cloud detection applied to NOAA-11 /AVHRR imagery , 1993 .

[10]  Larry L. Stowe,et al.  Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm f , 1999 .

[11]  Michel Desbois,et al.  Automatic classification of clouds on Meteosat imagery - Application to high-level clouds , 1982 .

[12]  J. R. Eyre,et al.  Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery , 1984 .

[13]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[14]  R. Saunders,et al.  An improved method for detecting clear sky and cloudy radiances from AVHRR data , 1988 .

[15]  F. Bretherton,et al.  Cloud cover from high-resolution scanner data - Detecting and allowing for partially filled fields of view , 1982 .

[16]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[17]  K. Karlsson Cloud climate investigations in the Nordic region using NOAA AVHRR data , 1997 .

[18]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[19]  R. Saunders,et al.  An automated scheme for the removal of cloud contamination from AVHRR radiances over western Europe , 1986 .

[20]  X. Wu,et al.  Emissivity of rough sea surface for 8-13 num: modeling and verification. , 1997, Applied optics.

[21]  Karl-Göran Karlsson,et al.  A 10 year cloud climatology over Scandinavia derived from NOAA Advanced Very High Resolution Radiometer imagery , 2003 .

[22]  J. Faundeen,et al.  The 1 km AVHRR global land data set: first stages in implementation , 1994 .

[23]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[24]  J. Coakley,et al.  Towards the objective analysis of clouds from satellite imagery data , 1984 .

[25]  David Warren,et al.  AVHRR channel-3 noise and methods for its removal , 1989 .

[26]  Philip A. Durkee,et al.  Snow/Cloud Discrimination with Multispectral Satellite Measurements , 1990 .

[27]  C. Long,et al.  Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data , 1991 .

[28]  G. Hunt Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths , 1973 .

[29]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[30]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[31]  G S Pankiewicz,et al.  Pattern recognition techniques for the identification of cloud and cloud systems , 2007 .

[32]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[33]  K. Masuda,et al.  Emissivity of pure and sea waters for the model sea surface in the infrared window regions , 1988 .

[34]  Bryan A. Baum,et al.  A Grouped Threshold Approach for Scene Identification in AVHRR Imagery , 1999 .

[35]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[36]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[37]  James J. Simpson,et al.  Application of neural networks to AVHRR cloud segmentation , 1995, IEEE Trans. Geosci. Remote. Sens..

[38]  A. Slingo,et al.  Sensitivity of the Earth's radiation budget to changes in low clouds , 1990, Nature.

[39]  Kwo-Sen Kuo,et al.  A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using AVHRR imagery , 1999 .

[40]  Karl-Göran Karlsson Development of an operational cloud classification model , 1989 .