An algebraic characterization of the static output feedback stabilization problem

The problem of static output feedback stabilization for single-input or single-output linear systems is addressed. A necessary and sufficient condition, based on the use of the observability canonical form, is proposed. Finally, it is shown that the problem can be recast as a quadratically constrained LMI problem.

[1]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[2]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[3]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[4]  G. Gu Stabilizability conditions of multivariable uncertain systems via output feedback control , 1990 .

[5]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[6]  K. Wei,et al.  Stabilization of a linear plant via a stable compensator having no real unstable zeros , 1990 .

[7]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[8]  Alessandro Astolfi,et al.  Static output feedback stabilization of linear and nonlinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[9]  C. Nett,et al.  Minimal Complexity Control Law Synthesis, Part 1: Problem Formulation and Reduction to Optimal Static Output Feedback , 1989, 1989 American Control Conference.

[10]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[11]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[12]  R. Skelton,et al.  Parametrization of all stabilizing controllers via quadratic Lyapunov functions , 1995 .