Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups

Abstract This paper examines the distribution and the abundance of hydrated minerals (any mineral that contains H 2 O or OH) on outer Main Belt asteroids spanning the 2.5  a a a a a 2 O ice. A similar rounded 3-μm feature was also identified in 24 Themis and 65 Cybele. Unlike the sharp group, the rounded group did not experience aqueous alteration. Of the asteroids observed in this study, 140 Siwa, a P-type, is the only one that does not exhibit a 3-μm feature. These results are important to constrain the nature and the degree of aqueous alteration in outer Main Belt asteroids.

[1]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[2]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[3]  Andrew Scott Rivkin,et al.  Asteroid 65 Cybele: Detection Of Small Silicate Grains, Water-Ice And Organics , 2010 .

[4]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[5]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[6]  A. Rubin Mineralogy of meteorite groups , 1997 .

[7]  Richard P. Binzel,et al.  Constraining near-Earth object albedos using near-infrared spectroscopy , 2005 .

[8]  Modeling of Liquid Water on CM Meteorite Parent Bodies and Implications for Amino Acid Racemization , 1999, physics/9911032.

[9]  J. Bell,et al.  Visible and Near-Infrared Spectral Observations of 4179 Toutatis , 1994 .

[10]  Larry A. Lebofsky,et al.  The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt , 1990 .

[11]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[12]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[13]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[14]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[15]  Andrew Scott Rivkin,et al.  Brucite and carbonate assemblages from altered olivine-rich materials on Ceres , 2009 .

[16]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[17]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[18]  D. Jewitt,et al.  IDENTIFICATION OF MAGNETITE IN B-TYPE ASTEROIDS , 2010, 1006.5110.

[19]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[20]  Andrew Scott Rivkin,et al.  The surface composition of Ceres: Discovery of carbonates and iron-rich clays , 2006 .

[21]  H. McSween,et al.  Thermal Evolution Models of Asteroids , 2002 .

[22]  J. Lunine,et al.  Distribution and Evolution of Water Ice in the Solar Nebula: Implications for Solar System Body Formation☆ , 1998 .

[23]  S. Cabrit,et al.  Forbidden Line and H alpha Profiles in T Tauri Star Spectra: A Probe of Anisotropic Mass Outflows and Circumstellar Disks , 1987 .

[24]  J. Taylor An Introduction to Error Analysis , 1982 .

[25]  H. Weaver,et al.  Detection of Water Vapor in Halley's Comet , 1986, Science.

[26]  H. McSween,et al.  Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating , 1993, Science.

[27]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[28]  John T. Rayner,et al.  Four years of good SpeX , 2004, SPIE Astronomical Telescopes + Instrumentation.

[29]  G. Rieke,et al.  Ice in Comet Bowell , 1983, Nature.

[30]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[31]  H. Weaver,et al.  Post-perihelion observations of water in comet Halley , 1986, Nature.

[32]  L. Lebofsky Infrared reflectance spectra of asteroids - A search for water of hydration , 1980 .

[33]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[34]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[35]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[36]  T. Encrenaz,et al.  The atmospheric composition and structure of Jupiter and Saturn from ISO observations: a preliminary review , 1999 .

[37]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[38]  B. Schmitt,et al.  Goethite as an alternative origin of the 3.1 μm band on dark asteroids , 2011 .

[39]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[40]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[41]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[42]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[43]  Carle M. Pieters,et al.  METEORITE AND ASTEROID REFLECTANCE SPECTROSCOPY: Clues to Early Solar System Processes , 1994 .

[44]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[45]  R. Clark,et al.  Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm , 1991 .

[46]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[47]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[48]  R. H. Brown,et al.  Evidence for Ammonium-Bearing Minerals on Ceres , 1991, Science.

[49]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[50]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[51]  D. Colburn,et al.  Electrical Heating of Meteorite Parent Bodies and Planets by Dynamo Induction from a Pre-main Sequence T Tauri “Solar Wind” , 1968, Nature.

[52]  L. Lebofsky,et al.  The 1.7- to 4.2-μm spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals , 1981 .

[53]  Jonathan I. Lunine,et al.  Origin of Water Ice in the Solar System , 2006 .

[54]  M. Fulchignoni,et al.  Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission , 2005 .

[55]  T. Hiroi,et al.  The first detection of water absorption on a D type asteroid , 2003 .

[56]  M. Gaffey,et al.  Composition of 298 Baptistina: Implications for the K/T impactor link , 2009 .

[57]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[58]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[59]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[60]  R. H. Brown,et al.  Surface composition of Kuiper belt object 1993SC. , 1997, Science.

[61]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[62]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[63]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[64]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[65]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[66]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .