Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement

We systematically investigate the optical and electrical properties of ultrathin two-dimensional (2D) Ag nanogratings (NGs), and explore their use as plasmonic transparent conducting electrodes in molecular organic photovoltaics (OPVs). A large broadband and polarization-insensitive optical absorption enhancement in the CuPc (copper phthalocyanine): PTCBI (perylene tetracarboxylic bisbenzimidazole) active light-harvesting layers is demonstrated using ultrathin 2D Ag NGs, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes.

[1]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[2]  Qiaoqiang Gan,et al.  Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[3]  Zakya H. Kafafi,et al.  Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells , 2011 .

[4]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[5]  Zakya H. Kafafi,et al.  Polymeric photovoltaics with various metallic plasmonic nanostructures , 2013 .

[6]  Lei Zhang,et al.  Photonic crystal geometry for organic solar cells. , 2009, Nano letters.

[7]  Hilmi Volkan Demir,et al.  Volumetric plasmonic resonator architecture for thin-film solar cells , 2011 .

[8]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.

[9]  Albert Polman,et al.  Transparent conducting silver nanowire networks. , 2012, Nano letters.

[10]  R. Wood XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum , 1902 .

[11]  Martin Dressel,et al.  How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. , 2009, Physical review letters.

[12]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[13]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[14]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[15]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[16]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[17]  R. Hatton,et al.  Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono‐Molecular Nucleation Layer , 2011 .

[18]  A. Ostfeld,et al.  Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics , 2011 .

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[21]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[22]  Andrea Alù,et al.  Quenched optical transmission in ultrathin subwavelength plasmonic gratings , 2011 .

[23]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[24]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[25]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[26]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[27]  Beibei Zeng,et al.  Super absorption of ultra-thin organic photovoltaic films , 2014 .

[28]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[29]  Chun-Sing Lee,et al.  Transparent organic light-emitting devices with LiF/Yb:Ag cathode , 2007 .

[30]  K. Sreenivas,et al.  Preparation and characterization of rf sputtered indium tin oxide films , 1985 .

[31]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[32]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[33]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[34]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[35]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[36]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[37]  J. Nanos,et al.  Is indium tin oxide a suitable electrode in organic solar cells? Photovoltaic properties of interfaces in organic p∕n junction photodiodes , 2006 .

[38]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[39]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[40]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[41]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[42]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[43]  Filbert J. Bartoli,et al.  Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters , 2014, CLEO 2014.

[44]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[45]  C. Tang Two‐layer organic photovoltaic cell , 1986 .