Design and synthesis of highly emissive solid fluorophores

Efficient solid-state emission of organic materials is essential for optoelectronic devices such as organic light-emitting diodes, light-emitting thin film transistors, semiconductor lasers, and solid luminescent sensors. Therefore, exploration of novel chromophores that emit visible light with high efficiency in the solid state and understanding of their characteristics regarding molecular and electronic structures as well as three-dimensional arrangement in the solid state are highly important for the development and advance of such optoelectronic devices. We will report synthesis, structures, and photophysical properties of 3,2'-silicon-bridged 2-arylindoles that exhibit blue and greenish blue photoluminescence with high to excellent quantum yields (0.65~1.0) in the solid states such as microcrystals, thin-film, and doped polymer film. In addition, synthesis and photophysical properties of 1,4-bis(alkenyl)-2,5-dipiperidinobenzenes that are compact and highly emissive solid fluorophores will be also presented. The emission colors of the benzenes can be tuned in a range from blue to red by choosing appropriate functional groups incorporated at the ethenyl moieties.

[1]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[2]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches , 1997 .

[3]  Y.‐T. Lin,et al.  Highly Efficient UV Organic Light‐Emitting Devices Based on Bi(9,9‐diarylfluorene)s , 2005 .

[4]  G. Kranzelbinder,et al.  Organic solid-state lasers , 2000 .

[5]  T. Hiyama,et al.  Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates. , 2008, Angewandte Chemie.

[6]  E. W. Meijer,et al.  Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. , 2006, The journal of physical chemistry. B.

[7]  R. Larock,et al.  Synthesis of heterocycles via palladium-catalyzed oxidative addition. , 2006, Chemical reviews.

[8]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[9]  K. Tamao,et al.  Silole-containing σ- and π-conjugated compounds , 1998 .

[10]  Junbiao Peng,et al.  Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability , 2006 .

[11]  K. Müllen,et al.  Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. , 2009, Journal of the American Chemical Society.

[12]  A. Facchetti,et al.  Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. , 2006, Journal of the American Chemical Society.

[13]  A. Holmes,et al.  Poly(9,9-dialkyl-3,6-dibenzosilole)--a high energy gap host for phosphorescent light emitting devices. , 2005, Chemical communications.

[14]  Khai Leok Chan,et al.  Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. , 2009, Chemical reviews.

[15]  H. Tian,et al.  Hole transport triphenylamine–spirosilabifluorene alternating copolymer: synthesis and optical, electrochemical and electroluminescent properties , 2005 .

[16]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[17]  J. Dubac,et al.  Group 14 metalloles. 1. Synthesis, organic chemistry, and physicochemical data , 1990 .

[18]  Yuguang Ma,et al.  Crystal Structure of a Highly Luminescent Slice Crystal Grown in the Vapor Phase: A New Polymorph of 2,5-Diphenyl-1,4-distyrylbenzene , 2007 .

[19]  T. Matsushita,et al.  Theoretical Analysis of the Emission Mechanism in Phosphorescent EL Devices , 2003 .

[20]  M. Murakami,et al.  Synthesis of silafluorenes by iridium-catalyzed [2 + 2 + 2] cycloaddition of silicon-bridged diynes with alkynes. , 2007, Organic letters.

[21]  K. Tamao,et al.  Theoretical Study of the Electronic Structure of 2,2'-Bisilole in Comparison with 1,1'-Bi-1,3-cyclopentadiene : σ^*-π^* Conjugation and a Low-Lying LUMO as the Origin of the Unusual Optical Properties of 3,3',4,4'-Tetraphenyl-2,2'-bisilole^ , 1996 .

[22]  A. Wakamiya,et al.  Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit. , 2006, Journal of the American Chemical Society.

[23]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[24]  W. Trogler,et al.  Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers , 2007 .

[25]  H. Yamada,et al.  Synthesis, structures, and photophysical properties of silicon and carbon-bridged ladder oligo( p -phenylenevinylene)s and related π-electron systems , 2005 .

[26]  T. Hiyama,et al.  Silicon-bridge effects on photophysical properties of silafluorenes. , 2008, Chemistry, an Asian journal.

[27]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[28]  Stephen R. Forrest,et al.  Lasing action in organic semiconductor thin films , 1999 .

[29]  J. Pei,et al.  Three-dimensional architectures for highly stable pure blue emission. , 2007, Journal of the American Chemical Society.

[30]  Yong Cao,et al.  Silole‐Containing Polymers: Chemistry and Optoelectronic Properties , 2007 .

[31]  A. Wakamiya,et al.  Ladder oligo(p-phenylenevinylene)s with silicon and carbon bridges. , 2005, Journal of the American Chemical Society.

[32]  Olivier Sandre,et al.  Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength , 2008 .

[33]  Yuguang Ma,et al.  Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. , 2007, Chemical communications.

[34]  K. Mori,et al.  3-boryl-2,2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. , 2007, Angewandte Chemie.

[35]  Graham A. Turnbull,et al.  Organic Semiconductor Lasers , 2007 .

[36]  T. Swager,et al.  Highly emissive conjugated polymer excimers. , 2005, Journal of the American Chemical Society.

[37]  A. Prasanna de Silva,et al.  Luminescent sensors and switches in the early 21st century , 2005 .

[38]  Otto S. Wolfbeis,et al.  Materials for fluorescence-based optical chemical sensors , 2005 .

[39]  David N. Reinhoudt,et al.  Design of Fluorescent Materials for Chemical Sensing , 2007 .

[40]  Yi‐Ting Lee,et al.  Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes. , 2008, Chemical communications.

[41]  Khai Leok Chan,et al.  Poly(2,7-dibenzosilole): a blue light emitting polymer. , 2005, Journal of the American Chemical Society.

[42]  Y. Chien,et al.  Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability. , 2002, Journal of the American Chemical Society.

[43]  T. Swager,et al.  Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers , 2007 .

[44]  J. Ohshita,et al.  Synthesis of oligomers having a pendant dithienosilole unit and their applications to EL device materials , 2005 .

[45]  Sang Ho Lee,et al.  Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives. , 2005, Journal of the American Chemical Society.

[46]  Donal D. C. Bradley,et al.  Enhanced Solid‐State Luminescence and Low‐Threshold Lasing from Starburst Macromolecular Materials , 2009 .

[47]  J. Roncali,et al.  A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Self‐Confinement for Nondoped Organic Red‐Light‐Emitting Diodes , 2008 .

[48]  F. Cicoira,et al.  Organic Light Emitting Field Effect Transistors: Advances and Perspectives , 2007 .

[49]  Seth R. Marder,et al.  Substituent Effects on the Electronic Structure of Siloles , 2009 .

[50]  Wallace W. H. Wong,et al.  Poly(dibenzosilole)s , 2008 .

[51]  Daoben Zhu,et al.  Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. , 2005, Journal of the American Chemical Society.

[52]  Jiann T. Lin,et al.  Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters. , 2008, Angewandte Chemie.

[53]  T. Swager,et al.  Highly Emissive Iptycene-Fluorene Conjugated Copolymers: Synthesis and Photophysical Properties , 2008 .

[54]  J. Ohshita,et al.  Synthesis and Optical, Electrochemical, and Electron-Transporting Properties of Silicon-Bridged Bithiophenes , 1999 .

[55]  Mario Leclerc,et al.  A New Poly(2,7‐Dibenzosilole) Derivative in Polymer Solar Cells , 2007 .

[56]  J. Ohshita,et al.  Effects of Conjugated Substituents on the Optical, Electrochemical, and Electron-Transporting Properties of Dithienosiloles , 2001 .

[57]  Uli Lemmer,et al.  Conjugated polymers: lasing and stimulated emission , 2001 .

[58]  H. Yamada,et al.  Ladder distyrylbenzenes with silicon and chalcogen bridges: synthesis, structures, and properties. , 2007, Organic letters.

[59]  G. Turnbull,et al.  Polymer lasers: recent advances , 2004 .

[60]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[61]  J. Ohshita,et al.  Synthesis of Bis(diarylphosphino)dithienosilole Derivatives as Novel Photo- and Electroluminescence Materials† , 2007 .

[62]  T. Hiyama,et al.  1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. , 2009, Angewandte Chemie.