Overview of quantum error prevention and leakage elimination

Abstract Quantum error prevention strategies will be required to produce a scalable quantum computing device and are of central importance in this regard. Progress in this area has been quite rapid in the past few years. In order to provide an overview of the achievements in this area, we discuss the three major classes of error prevention strategies, the abilities of these methods and the shortcomings. We then discuss the combinations of these strategies which have recently been proposed in the literature. Finally, we present recent results in reducing errors on encoded subspaces using decoupling controls. We show how to generally remove mixing of an encoded subspace with external states (termed leakage errors) using decoupling controls. Such controls are known as ‘leakage elimination operations’ or ‘LEOs’.

[1]  M. Scully,et al.  Inhibition of decoherence due to decay in a continuum. , 2001, Physical review letters.

[2]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.

[3]  M L Glasser,et al.  Indirect interaction of solid-state qubits via two-dimensional electron gas. , 2001, Physical review letters.

[4]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[6]  D. A. Lidar,et al.  Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .

[7]  D. A. Lidar,et al.  Encoded recoupling and decoupling: An alternative to quantum error-correcting codes applied to trapped-ion quantum computation , 2003 .

[8]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[9]  Daniel A. Lidar,et al.  Empirical determination of dynamical decoupling operations , 2003 .

[10]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[11]  University of Maryland,et al.  Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise , 2002, quant-ph/0211081.

[12]  Daniel A. Lidar,et al.  Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..

[13]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[14]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[15]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[16]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[17]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[18]  G. Alber,et al.  Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation , 2002 .

[19]  Daniel A. Lidar,et al.  Quantum computers and decoherence: exorcising the demon from the machine , 2003, SPIE International Symposium on Fluctuations and Noise.

[20]  Mark Dykman,et al.  Quantum Computing with Electrons Floating on Liquid Helium , 1999 .

[21]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[22]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[23]  Paolo Zanardi Stabilizing quantum information , 2000 .

[24]  Masaki Aihara,et al.  Multipulse control of decoherence , 2002 .

[25]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[26]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[27]  D A Lidar,et al.  Universal fault-tolerant quantum computation in the presence of spontaneous emission and collective dephasing. , 2002, Physical review letters.

[28]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[29]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[30]  Seth Lloyd,et al.  Resonant cancellation of off-resonant effects in a multilevel qubit , 2000 .

[31]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[32]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[33]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[34]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[35]  Daniel A. Lidar,et al.  Combined error correction techniques for quantum computing architectures , 2002, quant-ph/0210072.

[36]  Jeremy Levy Quantum-information processing with ferroelectrically coupled quantum dots , 2001 .

[37]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[38]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[39]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[40]  I. D'Amico,et al.  Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots , 2001, cond-mat/0109337.

[41]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[42]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[43]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[44]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[45]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[46]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[47]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .

[48]  Simon C. Benjamin Simple pulses for universal quantum computation with a Heisenberg ABAB chain , 2001 .

[49]  M. Ban Photon-echo technique for reducing the decoherence of a quantum bit , 1998 .

[50]  K. B. Whaley,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[51]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[52]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[53]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[54]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[55]  A Delgado,et al.  Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes. , 2001, Physical review letters.

[56]  D. Vitali,et al.  Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.

[57]  Masaki Aihara,et al.  Synchronized pulse control of decoherence , 2003 .

[58]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[59]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[60]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[62]  K J Resch,et al.  Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. , 2003, Physical review letters.

[63]  Lorenza Viola,et al.  Dynamical suppression of 1/f noise processes in qubit systems. , 2004, Physical review letters.

[64]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[65]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[66]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[67]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[68]  Alexandre Blais,et al.  Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits , 2002, Quantum Inf. Process..

[69]  Daniel A. Lidar,et al.  Quantum Computing in the Presence of Spontaneous Emission , 2003 .

[70]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[71]  Paolo Zanardi Computation on an error-avoiding quantum code and symmetrization , 1999 .

[72]  D A Lidar,et al.  Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.

[73]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.