Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation

Abstract This paper presents an adaptive refinement algorithm of a B-spline based finite-element approximation of the streamfunction formulation for the large scale wind-driven ocean currents. In particular, we focus on a posteriori error analysis of the simplified linear model of the stationary quasi-geostrophic equations, namely the Stommel–Munk model, which is the fourth-order partial differential equation. The analysis provides a posteriori error estimator for the local refinement of the Nitsche-type finite-element formulation. Numerical experiments with several benchmark examples are performed to test the capability of the posteriori error indicator on rectangular and L -shape geometries.

[1]  E. Fried,et al.  Numerical study of the wrinkling of a stretched thin sheet , 2012 .

[2]  Traian Iliescu,et al.  A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean , 2012, Comput. Math. Appl..

[3]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[4]  J. Dolbow,et al.  An edge-bubble stabilized finite element method for fourth-order parabolic problems , 2009 .

[5]  Rafael Vázquez,et al.  Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .

[6]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[7]  Wen Jiang,et al.  Adaptive refinement of hierarchical B‐spline finite elements with an efficient data transfer algorithm , 2015 .

[8]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[9]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[10]  J. Dolbow,et al.  Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials , 2012 .

[11]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[12]  Tae-Yeon Kim,et al.  A numerical method for a second-gradient theory of incompressible fluid flow , 2007, J. Comput. Phys..

[13]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[14]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[15]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[16]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[17]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[18]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[19]  Traian Iliescu,et al.  B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean , 2015 .

[20]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[21]  Rodolfo Rodríguez,et al.  A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .

[22]  Tae-Yeon Kim,et al.  A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean , 2016 .

[23]  Tae-Yeon Kim,et al.  Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries , 2016 .

[24]  Andrew J. Weaver,et al.  A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[27]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[28]  Luca Heltai,et al.  Error Analysis of a B-Spline Based Finite-Element Method for Modeling Wind-Driven Ocean Circulation , 2016, J. Sci. Comput..

[29]  E. Fried,et al.  A numerical study of the Navier–Stokes-αβ model , 2011 .