Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation
暂无分享,去创建一个
Tae-Yeon Kim | Ibrahim Al Balushi | Wen Jiang | Gantumur Tsogtgerel | Tae-Yeon Kim | Wen Jiang | G. Tsogtgerel | I. A. Balushi
[1] E. Fried,et al. Numerical study of the wrinkling of a stretched thin sheet , 2012 .
[2] Traian Iliescu,et al. A two-level finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean , 2012, Comput. Math. Appl..
[3] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[4] J. Dolbow,et al. An edge-bubble stabilized finite element method for fourth-order parabolic problems , 2009 .
[5] Rafael Vázquez,et al. Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .
[6] Isaac Harari,et al. A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .
[7] Wen Jiang,et al. Adaptive refinement of hierarchical B‐spline finite elements with an efficient data transfer algorithm , 2015 .
[8] J. Dolbow,et al. Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .
[9] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[10] J. Dolbow,et al. Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials , 2012 .
[11] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[12] Tae-Yeon Kim,et al. A numerical method for a second-gradient theory of incompressible fluid flow , 2007, J. Comput. Phys..
[13] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[14] Rolf Stenberg,et al. Nitsche's method for general boundary conditions , 2009, Math. Comput..
[15] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[16] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[17] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[18] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[19] Traian Iliescu,et al. B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean , 2015 .
[20] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[21] Rodolfo Rodríguez,et al. A priori and a posteriori error analysis for a large-scale ocean circulation finite element model , 2003 .
[22] Tae-Yeon Kim,et al. A C0-discontinuous Galerkin method for the stationary quasi-geostrophic equations of the ocean , 2016 .
[23] Tae-Yeon Kim,et al. Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries , 2016 .
[24] Andrew J. Weaver,et al. A Diagnostic Barotropic Finite-Element Ocean Circulation Model , 1995 .
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[27] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[28] Luca Heltai,et al. Error Analysis of a B-Spline Based Finite-Element Method for Modeling Wind-Driven Ocean Circulation , 2016, J. Sci. Comput..
[29] E. Fried,et al. A numerical study of the Navier–Stokes-αβ model , 2011 .