A programmed surface on dental implants sequentially initiates bacteriostasis and osseointegration.

[1]  P. Chu,et al.  Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially , 2021, Innovation.

[2]  D. Manoil,et al.  Microbial Community-Driven Etiopathogenesis of Peri-Implantitis , 2020, Journal of dental research.

[3]  Manisha Pandey,et al.  Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. , 2020, Materials science & engineering. C, Materials for biological applications.

[4]  N. Zhang,et al.  pH-Sensitive Chitosan–Heparin Nanoparticles for Effective Delivery of Genetic Drugs into Epithelial Cells , 2019, Pharmaceutics.

[5]  A. Kononov,et al.  Silver cluster–amino acid interactions: a quantum-chemical study , 2019, Amino Acids.

[6]  Taichi Tenkumo,et al.  Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation , 2019, Scientific Reports.

[7]  Wenbo Jiang,et al.  Long‐Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity , 2019, Advanced healthcare materials.

[8]  Anders Palmquist,et al.  Osseointegration and current interpretations of the bone-implant interface. , 2019, Acta biomaterialia.

[9]  Shu Wang,et al.  Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance , 2018, Advanced materials.

[10]  P. Tsimbouri,et al.  Antibacterial surface modification of titanium implants in orthopaedics , 2018, Journal of tissue engineering.

[11]  Jialong Chen,et al.  The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces , 2018, Royal Society Open Science.

[12]  M. Rahman,et al.  A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives , 2017, Journal of Advanced Research.

[13]  R. Valiev,et al.  Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching , 2017, Nanomaterials.

[14]  F. Jakob,et al.  Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion. , 2015, Bone.

[15]  L. Bozec,et al.  Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces , 2015, Journal of dental research.

[16]  J. Song,et al.  The Application of Bactericidal Silver Nanoparticles in Wound Treatment , 2015 .

[17]  I. Schechter,et al.  Osseointegration: biological events in relation to characteristics of the implant surface. , 2014, SADJ : journal of the South African Dental Association = tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging.

[18]  Matthias Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[19]  Carla Renata Arciola,et al.  Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. , 2012, Biomaterials.

[20]  Y. Kokunov,et al.  Synthesis and structure of silver coordination polymer with extended ditopic ligand containing terminal amino groups [Ag(C24H28N2)1.5]NO3 , 2012, Russian Journal of Inorganic Chemistry.

[21]  Chunmao Han,et al.  The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity , 2012, Molecular Biology Reports.

[22]  Brendan Duffy,et al.  Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces. , 2012, Colloids and surfaces. B, Biointerfaces.

[23]  Jiao Sun,et al.  Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface , 2012, International journal of nanomedicine.

[24]  M. Dhanaraju,et al.  Silver nanoparticles as real topical bullets for wound healing. , 2011, The journal of the American College of Clinical Wound Specialists.

[25]  H. H. Lara,et al.  Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds , 2011, Journal of nanobiotechnology.

[26]  E. Blomberg,et al.  Layer-by-layer assemblies of chitosan and heparin: effect of solution ionic strength and pH. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[27]  J. Chen,et al.  Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. , 2010, Journal of biomedical materials research. Part A.

[28]  F. Schwarz,et al.  In vivo and in vitro biofilm formation on two different titanium implant surfaces. , 2010, Clinical oral implants research.

[29]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[30]  John A Jansen,et al.  The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. , 2009, Biomaterials.

[31]  T. Albrektsson,et al.  Effects of titanium surface topography on bone integration: a systematic review. , 2009, Clinical oral implants research.

[32]  Yi-Jen Chen,et al.  Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. , 2009, Biomaterials.

[33]  Q. Ruan,et al.  Investigation of layer-by-layer assembled heparin and chitosan multilayer films via electrochemical spectroscopy. , 2009, Journal of colloid and interface science.

[34]  D. Graves Cytokines that promote periodontal tissue destruction. , 2008, Journal of periodontology.

[35]  M. Kipper,et al.  Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin. , 2008, Biomacromolecules.

[36]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[37]  N. Lang,et al.  Bacterial colonization immediately after installation on oral titanium implants. , 2007, Clinical oral implants research.

[38]  M. Dard,et al.  Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. , 2007, Clinical oral implants research.

[39]  F. Sadeghi,et al.  Combination of time-dependent and pH-dependent polymethacrylates as a single coating formulation for colonic delivery of indomethacin pellets. , 2006, International journal of pharmaceutics.

[40]  S. Tosatti,et al.  Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. , 2006, Clinical oral implants research.

[41]  N. Lang,et al.  Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. , 2004, Clinical oral implants research.

[42]  K. Takehira,et al.  Crystalline CrV0.95P0.05O4 catalyst for the vapor-phase oxidation of picolines , 2004 .

[43]  Niklaus P Lang,et al.  De novo alveolar bone formation adjacent to endosseous implants. , 2003, Clinical oral implants research.

[44]  W. Dunne,et al.  Bacterial Adhesion: Seen Any Good Biofilms Lately? , 2002, Clinical Microbiology Reviews.

[45]  D. Hungerford,et al.  Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. , 2000, Journal of biomedical materials research.

[46]  D. Grenier,et al.  The oral cavity as a reservoir of bacterial pathogens for focal infections. , 2000, Microbes and infection.

[47]  B. Min,et al.  Photoemission study of AgTO 2 delafossites ÑTFe, Co, NiÖ , 2000 .

[48]  M. Rabiller-Baudry,et al.  Spectroscopic Characterization of Zirconia Coated by Polymers with Amine Groups , 2000 .

[49]  P Dalgaard,et al.  Estimation of bacterial growth rates from turbidimetric and viable count data. , 1994, International journal of food microbiology.

[50]  K. Ham,et al.  Connective tissue responses to some heavy metals. III. Silver and dietary supplements of ascorbic acid. Histology and ultrastructure. , 1989, British journal of experimental pathology.

[51]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[52]  Y. Sheng,et al.  Designing HA/PEI nanoparticle composite coating on biodegradable Mg–Zn–Y-Nd alloy to direct cardiovascular cells fate , 2021 .

[53]  Reinhard Schnettler,et al.  Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. , 2014, Acta biomaterialia.

[54]  Aravind Buddula Bacteria and dental implants: A review , 2013 .

[55]  T. Albrektsson,et al.  On implant surfaces: a review of current knowledge and opinions. , 2010, The International journal of oral & maxillofacial implants.