Vacancies and defect levels in III-V semiconductors

Using electronic structure calculations, we systematically investigate the formation of vacancies in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb), for a range of charges (−3≤q≤3) as a function of the Fermi level and under different growth conditions. The formation energies were corrected using the scheme due to Freysoldt et al. [Phys. Rev. Lett. 102, 016402 (2009)] to account for finite size effects. Vacancy formation energies were found to decrease as the size of the group V atom increased. This trend was maintained for Al-V, Ga-V, and In-V compounds. The negative-U effect was only observed for the arsenic vacancy in GaAs, which makes a charge state transition from +1 to –1. It is also found that even under group III rich conditions, group III vacancies dominate in AlSb and GaSb. For InSb, group V vacancies are favoured even under group V rich conditions.

[1]  A. Seitsonen,et al.  Identification of charge states of indium vacancies in InP using the positron-electron auto-correlation function , 1998 .

[2]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[3]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[4]  E. Tsymbal,et al.  Intrinsic defects in multiferroic BiFeO 3 and their effect on magnetism , 2012 .

[5]  H. Bracht,et al.  Concentration of intrinsic defects and self-diffusion in GaSb , 2008 .

[6]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[7]  Chang,et al.  Compensation and diffusion mechanisms of carbon dopants in GaAs. , 1994, Physical Review B (Condensed Matter).

[8]  B. Delley Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. , 2006, The journal of physical chemistry. A.

[9]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[10]  R. Nieminen,et al.  Ab initio study of fully relaxed divacancies in GaAs. , 1996, Physical review. B, Condensed matter.

[11]  C. Elsässer,et al.  First-principles density functional theory study of native point defects in Bi2Te3 , 2011 .

[12]  C. Ting,et al.  Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III-V compound semiconductors , 1982 .

[13]  B. Yildiz,et al.  Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects , 2012 .

[14]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[15]  Zhang,et al.  Energetics of the As vacancy in GaAs: The stability of the 3+ charge state. , 1994, Physical review. B, Condensed matter.

[16]  A. Fazzio,et al.  Electronic structure of neutral and negatively charged gallium vacancies in GaP , 1982 .

[17]  O. Pagès,et al.  First-principles study of the ternary semiconductor alloys (Ga,Al)(As,Sb) , 2010 .

[18]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[19]  D. W. Goodwin,et al.  New infra-red detectors using indium antimonide , 1957 .

[20]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[21]  P. Papoulias,et al.  First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy , 2002, 1101.1413.

[22]  Z. Jiao,et al.  Simulation of optical function for phosphide crystals following the DFT band structure calculations , 2011 .

[23]  C. Castleton,et al.  Relative concentration and structure of native defects in GaP , 2005 .

[24]  B. Johansson,et al.  Point defects on the (110) surfaces of InP, InAs, and InSb : A comparison with bulk , 2006 .

[25]  M. Puska,et al.  Native point defect energetics in GaSb: Enabling p-type conductivity of undoped GaSb , 2012 .

[26]  Jan Söderkvist,et al.  Gallium arsenide as a mechanical material , 1994 .

[27]  J. P. Silveira,et al.  Large disparity between gallium and antimony self-diffusion in gallium antimonide , 2000, Nature.

[28]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[29]  Nicholas D. M. Hine,et al.  Supercell size scaling of density functional theory formation energies of charged defects , 2009 .

[30]  O. Anatole von Lilienfeld,et al.  Simple intrinsic defects in gallium arsenide , 2009 .

[31]  C. Castleton,et al.  Ab initio study of neutral vacancies in InP using supercells and finite size scaling , 2003 .

[32]  Partha S. Dutta,et al.  The physics and technology of gallium antimonide: An emerging optoelectronic material , 1997 .

[33]  K. Seeger,et al.  Microwave dielectric constant of aluminium antimonide , 1991 .

[34]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[35]  M. Du Defects in AlSb: A density functional study , 2009 .

[36]  A. Chroneos,et al.  Phase stability and the arsenic vacancy defect in InxGa1−xAs , 2011 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  Michel Freyss,et al.  Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation , 2005 .

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[41]  A. Williamson,et al.  Intrinsic point defects in aluminum antimonide , 2008, 1009.0465.

[42]  T. Bredow,et al.  Color centers in NaCl by hybrid functionals , 2010, 1006.3935.

[43]  M. Scheffler,et al.  New perspective on formation energies and energy levels of point defects in nonmetals. , 2012, Physical review letters.

[44]  J. P. Silveira,et al.  Gallium self-diffusion in gallium phosphide , 1997 .

[45]  Y. Asai,et al.  Energy band structure calculations based on screened Hartree-Fock exchange method: Si, AlP, AlAs, GaP, and GaAs. , 2010, The Journal of chemical physics.

[46]  Normand Mousseau,et al.  Self-vacancies in gallium arsenide: An ab initio calculation , 2005 .

[47]  Alfredo Pasquarello,et al.  Identification of defect levels at InxGa1-xAs/oxide interfaces through hybrid functionals , 2011 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kth,et al.  Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP , 2004, cond-mat/0512306.

[50]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[51]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[52]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[53]  G. L. Pearson,et al.  Properties of vacancy defects in GaAs single crystals , 1975 .

[54]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[55]  O. Madelung Semiconductors: Data Handbook , 2003 .