An Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems
暂无分享,去创建一个
Ruo Li | Pingbing Ming | Fengyang Tang | P. Ming | Ruo Li | F. Tang
[1] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[2] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[3] F. John. Partial differential equations , 1967 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[6] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[7] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[8] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[9] T. J. Rivlin,et al. The growth of polynomials bounded at equally spaced points , 1992 .
[10] Marcus J. Grote,et al. Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..
[11] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[12] E. Rakhmanov,et al. Bounds for polynomials with a unit discrete norm , 2007 .
[13] Assyr Abdulle,et al. Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..
[14] Antoine Gloria,et al. Reduction of the resonance error---Part 1: Approximation of homogenized coefficients , 2011 .
[15] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .
[16] V. Thomée,et al. The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .
[17] Philip Rabinowitz,et al. Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .
[18] Pingwen Zhang,et al. Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..
[19] E Weinan,et al. The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size , 2007, J. Comput. Phys..
[20] H. Hadwiger,et al. Einige Relationen im Dreieck , 1937 .
[21] Endre Süli,et al. Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.
[22] Björn Engquist,et al. Multiscale methods for the wave equation , 2007 .
[23] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[24] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[25] Pingbing Ming,et al. Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .
[26] Antoine Gloria,et al. An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..
[27] Christian Huet,et al. Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .
[28] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[29] Lothar Reichel. On polynomial approximation in the uniform norm by the discrete least squares method , 1986 .
[30] M. Powell,et al. Approximation theory and methods , 1984 .
[31] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[32] Raytcho D. Lazarov,et al. Higher-order finite element methods , 2005, Math. Comput..
[33] D. Wilhelmsen,et al. A Markov inequality in several dimensions , 1974 .
[34] Rui Du,et al. Convergence of the Heterogeneous Multiscale Finite Element Method for Elliptic Problems with Nonsmooth Microstructures , 2010, Multiscale Model. Simul..
[35] Assyr Abdulle,et al. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .
[36] I. Babuska,et al. Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .
[37] Xingye Yue,et al. Numerical methods for multiscale elliptic problems , 2006, J. Comput. Phys..
[38] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .