Environmental isotopes (δ2H, δ13C, δ18O, 3H, and 14C) as a diagnostic tool in the appraisal of mineral water management and protection: two case studies—Portugal

[1]  F. M. Monteiro Santos,et al.  Radiocarbon Dating and Stable Isotopes Content in the Assessment of Groundwater Recharge at Santiago Island, Republic of Cape Verde , 2022, Water.

[2]  The Sustainable Development Goals Report 2022 , 2022, The Sustainable Development Goals Report.

[3]  P. Carreira,et al.  The use of environmental isotopes in groundwater studies with hydrogeoethics: essential or dispensable? , 2022, Sustainable Water Resources Management.

[4]  P. Carreira,et al.  Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Essaouira Basin, Northwestern Morocco , 2022, Arabian Journal of Geosciences.

[5]  Luís H. Gomes,et al.  Contributions for the Understanding of the São Pedro do Sul (North of Portugal) Geohydraulic and Thermomineral System: Hydrochemistry and Stable Isotopes Studies , 2022, Géosciences.

[6]  A. Billi,et al.  Climate change and its effect on groundwater quality , 2021, Environmental Geochemistry and Health.

[7]  M. Barbieri,et al.  Hydrogeoethics in sustainable water resources management facing water scarcity in Mediterranean and surrounding regions , 2021, Mediterranean Geoscience Reviews.

[8]  L. Wassenaar,et al.  Progress and challenges in dual- and triple-isotope (δ18 O, δ2 H, Δ17 O) analyses of environmental waters: an international assessment of laboratory performance. , 2021, Rapid communications in mass spectrometry : RCM.

[9]  A. Chehbouni,et al.  Stable isotope and quality of groundwater around Ksob sub-basin, Essaouira, Morocco , 2021, Sustainable Water Resources Management.

[10]  C. Patinha,et al.  Temporal and Spatial Groundwater Contamination Assessment Using Geophysical and Hydrochemical Methods: The Industrial Chemical Complex of Estarreja (Portugal) Case Study , 2021, Applied Sciences.

[11]  Sayed Waliullah Aqili,et al.  Evaluation of Hydrogeoethics approach for sustainable management of groundwater resources in the upper Kabul sub-basin, Afghanistan , 2021, Sustainable Water Resources Management.

[12]  T. Mourabit,et al.  Spatial assessment of the vulnerability of water resources against anthropogenic pollution using the DKPR model: a case of Ghiss-Nekkour basin, Morocco , 2021, Arabian Journal of Geosciences.

[13]  A. Musacchio,et al.  Natural Background Levels of Potentially Toxic Elements in Groundwater from a Former Asbestos Mine in Serpentinite (Balangero, North Italy) , 2021, Water.

[14]  C. Biasi,et al.  Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading , 2021, Communications Earth & Environment.

[15]  H. Chaminé,et al.  Caldelas and Gerês hydrothermal systems (NW Portugal): a comparative study based on geochemical and isotopic signatures , 2021, Environmental Earth Sciences.

[16]  K. Zouari,et al.  Coastal Aquifer Salinization in Semi-Arid Regions: The Case of Grombalia (Tunisia) , 2021, Water.

[17]  D. Ducci,et al.  Meteorological Variability and Groundwater Quality: Examples in Different Hydrogeological Settings , 2020 .

[18]  E. Brooks,et al.  Noble gases, dead carbon, and reinterpretation of groundwater ages and travel time in local aquifers of the Columbia River Basalt Group , 2020 .

[19]  A. Boretti,et al.  Reassessing the projections of the World Water Development Report , 2019, npj Clean Water.

[20]  D. Ouazar,et al.  Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches , 2019, Environmental Earth Sciences.

[21]  P. Carreira,et al.  Carbon-14 content as a support for Moura mineral water aquifer conceptual model , 2019, Sustainable Water Resources Management.

[22]  Huaming Guo,et al.  Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China , 2018, Journal of Asian Earth Sciences.

[23]  P. Aggarwal,et al.  Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. , 2018, Rapid communications in mass spectrometry : RCM.

[24]  Ian Cartwright,et al.  A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations , 2017 .

[25]  E. Sacchi,et al.  Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). , 2017, The Science of the total environment.

[26]  A. Patera,et al.  Mapping oxygen stable isotopes of precipitation in Italy , 2016 .

[27]  G. Di Capua,et al.  Geoethics: The Role and Responsibility of Geoscientists , 2015 .

[28]  Helmut Segner,et al.  Future water quality monitoring--adapting tools to deal with mixtures of pollutants in water resource management. , 2015, The Science of the total environment.

[29]  John Haiman Reinterpretation , 2015 .

[30]  J. Mas-Pla,et al.  Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). , 2014, The Science of the total environment.

[31]  H. B. Dhia,et al.  Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia , 2014 .

[32]  P. Carreira,et al.  Carbon isotopes and geochemical processes in CO2-rich cold mineral water, N-Portugal , 2014, Environmental Earth Sciences.

[33]  P. Carreira,et al.  Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): Natural vs. human interference. A review and reinterpretation , 2014 .

[34]  I. Clark,et al.  THE ENVIRONMENTAL ISOTOPES , 2013 .

[35]  S. Foster,et al.  The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? , 2013, Hydrogeology Journal.

[36]  M. Liotta,et al.  Isotopic composition of precipitation and groundwater in Sicily, Italy , 2013 .

[37]  L. Campisi,et al.  Multi-isotope approach for the identification and characterisation of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area , 2013 .

[38]  B. Mayer,et al.  Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water-rock interaction in the Caldas da Rainha-Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal) , 2013 .

[39]  P. Aggarwal,et al.  Worldwide proficiency test for routine analysis of δ2H and δ18O in water by isotope-ratio mass spectrometry and laser absorption spectroscopy. , 2012, Rapid communications in mass spectrometry : RCM.

[40]  P. Carreira,et al.  Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal) , 2012 .

[41]  L. N. Plummer,et al.  A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating , 2012 .

[42]  J. Carvalho,et al.  Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach , 2011 .

[43]  R. Somashekar,et al.  Environmental tritium (³H) and hydrochemical investigations to evaluate groundwater in Varahi and Markandeya river basins, Karnataka, India. , 2011, Journal of environmental radioactivity.

[44]  N. Goldscheider,et al.  Review: Thermal water resources in carbonate rock aquifers , 2010 .

[45]  P. Carreira,et al.  Environmental isotopes (15N and 18O) in the assessment of groundwater degradation: Aveiro Quaternary aquifer (NW Portugal) , 2009 .

[46]  P. Carreira,et al.  A 15-year record of seasonal variation in the isotopic composition of precipitation water over continental Portugal , 2009 .

[47]  T. Moulin,et al.  Preface , 2009, Cerebrovascular Diseases.

[48]  P. Carreira,et al.  Isotopic evidence of aquifer recharge during the last ice age in Portugal , 2008 .

[49]  P. Carreira,et al.  Anthropogenic sources of contamination recognition — Sines coastal aquifer (SW Portugal) , 2008 .

[50]  M. Meddi,et al.  The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria , 2008 .

[51]  J. Holmes P. K. Aggarwal, J. Gat and K. F. O. Froehlich (eds), Isotopes in the Water Cycle: Past, Present and Future of a Developing Science , 2007 .

[52]  J. G. Farmer Soil and water contamination: From molecular to catchment scale , 2007 .

[53]  R. Gonfiantini,et al.  Carbon isotope exchange rate of DIC in karst groundwater , 2003 .

[54]  A. Bath,et al.  The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater , 2003 .

[55]  E. Paralta,et al.  O Parque Natural Hidrogeológico de Moura : contributos para a sua definição , 2002 .

[56]  J. Fontes,et al.  The altitude effect on the isotopic composition of tropical rains , 2001 .

[57]  M. P. Unterweger,et al.  Comprehensive Review and Critical Evaluation of the Half-Life of Tritium , 2000, Journal of research of the National Institute of Standards and Technology.

[58]  L. Araguás‐Araguás,et al.  Deuterium and oxygen‐18 isotope composition of precipitation and atmospheric moisture , 2000 .

[59]  E. Greber Deep circulation of CO2-rich palaeowaters in a seismically active zone (Kuzuluk/ Adapazari, Northwestern Turkey) , 1994 .

[60]  K. Różański,et al.  Relation Between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate , 1992, Science.

[61]  L. Araguás‐Araguás,et al.  Tritium in the global atmosphere: distribution patterns and recent trends , 1991 .

[62]  C. Fouillac,et al.  Etude des eaux thermominérales carbogazeuses du Massif Central Français. II. Comportement de quelques métaux en trace, de l'arsenic, de l'antimoine et du germanium , 1986 .

[63]  W. D. Laguna Tritium and Other Environmental Isotopes in the Hydrological Cycle , 1968 .

[64]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[65]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[66]  S. Epstein,et al.  Variation of O18 content of waters from natural sources , 1953 .

[67]  I. Friedman,et al.  Deuterium content of natural waters and other substances , 1953 .

[68]  E. Custodio Ethical and Moral Issues Relative to Groundwater , 2021 .

[69]  I. Matiatos,et al.  Characterization of groundwater dynamics and contamination in an unconfined aquifer using isotope techniques to evaluate domestic supply in an urban area , 2021 .

[70]  H. Chaminé,et al.  Advances in Geoethics and Groundwater Management : Theory and Practice for a Sustainable Development: Proceedings of the 1st Congress on Geoethics and Groundwater Management (GEOETH&GWM'20), Porto, Portugal 2020 , 2021, Advances in Science, Technology & Innovation.

[71]  P. Carreira,et al.  Groundwater Salinity and Environmental Change Over the Last 20,000 Years: Isotopic Evidences in the Lower Sado Aquifer Recharge, Portugal , 2018 .

[72]  P. Williams,et al.  A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. , 2016, Water research.

[73]  L. N. Plummer,et al.  A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater , 2016 .

[74]  By W. Dansga,et al.  Stable isotopes in precipitation , 2010 .

[75]  J. Waerenborgh,et al.  Response of a coastal aquifer in Portugal to hydroclimatic changes during the last deglaciation period , traced by chemical , isotope and noble gas data , 2007 .

[76]  A. Bath,et al.  ISOTOPES IN WATER , 2006 .

[77]  W. Edmunds Groundwater as an Archive of Climatic and Environmental Change , 2005 .

[78]  P. Aggarwal,et al.  Stable Oxygen and Hydrogen Isotopes in Precipitation , 2005 .

[79]  P. Aggarwal,et al.  Isotope Hydrology: A Historical Perspective from the IAEA , 2005 .

[80]  Pradeep K. Aggarwal,et al.  Isotopes in the Water Cycle: Past, present and future of a developing science , 2005 .

[81]  Harro A. J. Meijer,et al.  Environmental isotopes in the hydrological cycle: principles and applications , 2001 .

[82]  Krishnan Sharma,et al.  Department of Economic and Social Affairs.” , 2000 .

[83]  F. Sierro,et al.  Global and regional factors controlling changes of coastlines in Southern Iberia (Spain) during the Holocene , 1996 .