The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation
暂无分享,去创建一个
[1] Joseph Donald Walsh,et al. The boundary method and general auction for optimal mass transportation and Wasserstein distance computation , 2017 .
[2] Michael Muskulus,et al. Fluctuations and determinism of respiratory impedance in asthma and chronic obstructive pulmonary disease. , 2010, Journal of applied physiology.
[3] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[4] Dimitri P. Bertsekas,et al. A generic auction algorithm for the minimum cost network flow problem , 1993, Comput. Optim. Appl..
[5] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[6] J. A. Cuesta-Albertos,et al. A characterization for the solution of the Monge--Kantorovich mass transference problem , 1993 .
[7] Bernhard Schmitzer,et al. A Sparse Multiscale Algorithm for Dense Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.
[8] S. Haker,et al. Optimal mass transport and image registration , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.
[9] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[10] Quentin Mérigot,et al. A Newton algorithm for semi-discrete optimal transport , 2016, ArXiv.
[11] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[12] L. Kantorovich. On the Translocation of Masses , 2006 .
[13] Vladimir Oliker,et al. On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .
[14] Mathieu Desbrun,et al. Blue noise through optimal transport , 2012, ACM Trans. Graph..
[15] Xavier Dupuis. Semi-discrete principal-agent problem , 2016 .
[16] Péter Kovács,et al. Minimum-cost flow algorithms: an experimental evaluation , 2015, Optim. Methods Softw..
[17] Adam M. Oberman,et al. Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..
[18] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[19] Stanley Osher,et al. Fast Algorithms for Earth Mover's Distance Based on Optimal Transport and L1 Type Regularization I , 2016 .
[20] L. D. Prussner,et al. On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .
[21] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[22] L. Caffarelli,et al. On the Numerical Solution of the Problem of Reflector Design with Given Far-Field Scattering Data , 1999 .
[23] L. Rüschendorf,et al. Numerical and analytical results for the transportation problem of Monge-Kantorovich , 2000 .
[24] Adam M. Oberman,et al. Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..
[25] V. Oliker,et al. Optical Design of Single Reflector Systems and the Monge–Kantorovich Mass Transfer Problem , 2003 .
[26] Dimitri P. Bertsekas,et al. Network optimization : continuous and discrete models , 1998 .
[27] J. Barrett,et al. A MIXED FORMULATION OF THE MONGE-KANTOROVICH EQUATIONS , 2007 .
[28] G. Carlier. A general existence result for the principal-agent problem with adverse selection , 2001 .
[29] S. Rachev,et al. Mass transportation problems , 1998 .
[30] A. Pratelli,et al. On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation , 2007 .
[31] B. Lévy. A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.
[32] Ludger Rüschendorf,et al. Monge – Kantorovich transportation problem and optimal couplings , 2006 .
[33] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[34] James B. Orlin,et al. Max flows in O(nm) time, or better , 2013, STOC '13.
[35] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[36] J. Mirebeau. Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams , 2015, 1503.00947.
[37] Franz Aurenhammer,et al. Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.
[38] Quentin Mérigot,et al. A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.
[39] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[40] L. Kantorovich. On a Problem of Monge , 2006 .
[41] Franz Aurenhammer,et al. Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.
[42] C. Villani. Topics in Optimal Transportation , 2003 .
[43] P. Chiappori,et al. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .
[44] P. Chiappori,et al. Transition to nestedness in multi- to one-dimensional optimal transport , 2018, European journal of applied mathematics.
[45] L. Kantorovitch,et al. On the Translocation of Masses , 1958 .
[46] Wilfrid Gangbo,et al. Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .
[47] Adam M. Oberman,et al. Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..
[48] Pierre Seppecher,et al. Mathématiques/Mathematics Shape optimization solutions via Monge-Kantorovich equation , 1997 .
[49] Quentin Mérigot. A Comparison of Two Dual Methods for Discrete Optimal Transport , 2013, GSI.
[50] Cristian E. Gutiérrez,et al. An iterative method for generated Jacobian equations , 2017 .
[51] Jun Kitagawa. An iterative scheme for solving the optimal transportation problem , 2012 .
[52] Luca Dieci,et al. General auction method for real-valued optimal transport , 2017, ArXiv.