UNIFICATION OF LUMINOUS TYPE 1 QUASARS THROUGH C iv EMISSION

Using a sample of ∼30,000 quasars from the 7th Data Release of the Sloan Digital Sky Survey, we explore the range of properties exhibited by high-ionization, broad emission lines, such as C iv λ1549. Specifically, we investigate the anti-correlation between continuum luminosity and emission-line equivalent width (the Baldwin Effect (BEff)) and the “blueshifting” of the high-ionization emission lines with respect to low-ionization emission lines. Employing improved redshift determinations from Hewett & Wild, the blueshift of the C iv emission line is found to be nearly ubiquitous, with a mean shift of ∼810 km s−1 for radio-quiet (RQ) quasars and ∼360 km s−1 for radio-loud (RL) quasars. The BEff is present in both RQ and RL samples. We consider these phenomena within the context of an accretion disk-wind model that is modulated by the nonlinear correlation between ultraviolet and X-ray continuum luminosity. Composite spectra are constructed as a function of C iv emission-line properties in an attempt to reveal empirical relationships between different line species and the continuum. Within a two-component disk+wind model of the broad emission-line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while broad absorption line quasars are consistent with being dominated by the wind component. Some RQ objects have emission-line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of Lbol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters is due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the spectral energy distribution, which ultimately must be tied to BH mass and accretion rate.

[1]  James T. Allen,et al.  A strong redshift dependence of the broad absorption line quasar fraction , 2010, 1007.3991.

[2]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[3]  J. Baldwin,et al.  IMPLICATIONS OF INFALLING Fe ii-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES , 2009, 0911.1173.

[4]  D. Berk,et al.  PROBING THE ORIGINS OF THE C iv AND Fe Kα BALDWIN EFFECTS , 2009, 0907.2552.

[5]  M. Gaskell,et al.  What broad emission lines tell us about how active galactic nuclei work , 2009, 0908.0386.

[6]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[7]  F. Shankar,et al.  Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity , 2008 .

[8]  R. Becker,et al.  THE FIRST–2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS , 2008, 0808.3668.

[9]  L. Ho,et al.  A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole , 2008, 0807.2059.

[10]  L. Ho,et al.  ACCEPTED FOR PUBLICATION IN APJ (LETTERS). Preprint typeset using LATEX style emulateapj v. 03/07/07 Hβ PROFILES IN QUASARS: EVIDENCE FOR AN INTERMEDIATE-LINE REGION , 2022 .

[11]  Nanjing,et al.  The origin and evolution of C IV Baldwin effect in QSOs from the Sloan Digital Sky Survey , 2008, 0806.1787.

[12]  F. Shankar,et al.  Dependence of the BALQSO fraction on Radio Luminosity , 2008, 0801.4379.

[13]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[14]  D. Dultzin,et al.  C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei , 2007, 0705.1895.

[15]  W. Brandt,et al.  Radio through X-Ray Spectral Energy Distributions of 38 Broad Absorption Line Quasars , 2007, 0705.0538.

[16]  菅沼 正洋,et al.  日本天文学会 早川幸男基金による渡航報告書 : The Central Engine of Active Galactic Nuclei , 2007 .

[17]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[18]  Ž. Ivezić,et al.  The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.

[19]  D. Grupe,et al.  The Intrinsically X-Ray Weak Quasar PHL 1811. I. X-Ray Observations and Spectral Energy Distribution , 2006, astro-ph/0611349.

[20]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[21]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[22]  G. Richards Agn outflows in emission and absorption: the sdss perspective , 2006, astro-ph/0603827.

[23]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[24]  I. Strateva,et al.  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[25]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[26]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[27]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[28]  K. Leighly,et al.  FUSE Observation of the Narrow-Line Seyfert 1 Galaxy RE 1034+39: Dependence of Broad Emission Line Strengths on the Shape of the Photoionizing Spectrum , 2005, astro-ph/0508503.

[29]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[30]  J. Everett,et al.  Radiative Transfer and Acceleration in Magnetocentrifugal Winds , 2005, astro-ph/0506321.

[31]  T. Boroson Blueshifted [O III] Emission: Indications of a Dynamic Narrow-Line Region , 2005, astro-ph/0505127.

[32]  D. Berk,et al.  X-Ray Insights into Interpreting C IV Blueshifts and Optical/Ultraviolet Continua , 2004, astro-ph/0410641.

[33]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[34]  A. Laor,et al.  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[35]  A. Szalay,et al.  Spectral Classification of Quasars in the Sloan Digital Sky Survey: Eigenspectra, Redshift, and Luminosity Effects , 2004, astro-ph/0408578.

[36]  R. Zamanov,et al.  Average Ultraviolet Quasar Spectra in the Context of Eigenvector 1: A Baldwin Effect Governed by the Eddington Ratio? , 2004, astro-ph/0408334.

[37]  R. McLure,et al.  The relationship between radio luminosity and black-hole mass in optically selected quasars , 2004, astro-ph/0408203.

[38]  U. Wyoming,et al.  A Composite Extreme-Ultraviolet QSO Spectrum from FUSE , 2004, astro-ph/0403662.

[39]  A. Laor,et al.  On the origin of the C iv Baldwin effect in active galactic nuclei , 2004, astro-ph/0403365.

[40]  K. Leighly Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. II. Modeling and Interpretation , 2004, astro-ph/0402452.

[41]  M. Dietrich,et al.  Active Galactic Nucleus Emission-Line Properties Versus the Eddington Ratio , 2004, astro-ph/0402471.

[42]  P. Hall,et al.  Nitrogen-Enriched Quasars in the Sloan Digital Sky Survey First Data Release , 2004, astro-ph/0402205.

[43]  D. York,et al.  Continuum and Emission-Line Properties of Broad Absorption Line Quasars , 2003, astro-ph/0308508.

[44]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[45]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[46]  P. Hewett,et al.  The Frequency and Radio Properties of Broad Absorption Line Quasars , 2003, astro-ph/0301191.

[47]  E. L. Robinson,et al.  The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete Quasar Sample , 2002, astro-ph/0211641.

[48]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[49]  D. Proga Numerical Simulations of Mass Outflows Driven from Accretion Disks by Radiation and Magnetic Forces , 2002, astro-ph/0210642.

[50]  J. Shields,et al.  Continuum and Emission-Line Strength Relations for a Large Active Galactic Nuclei Sample , 2002, astro-ph/0208348.

[51]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[52]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[53]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[54]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[55]  T. Boroson Black Hole Mass and Eddington Ratio as Drivers for the Observable Properties of Radio-loud and Radio-quiet QSOs , 2001, astro-ph/0109317.

[56]  J. Dunlop,et al.  Quasars, their host galaxies and their central black holes , 2001, astro-ph/0108397.

[57]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[58]  J. V. Gent,et al.  On the Baldwin effect of He ii emission lines in WR (WN) stars , 2001 .

[59]  F. M. Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001, astro-ph/0105535.

[60]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[61]  G. Canalizo,et al.  Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Mergers , 2001, astro-ph/0103332.

[62]  R. Becker,et al.  The Radio Luminosity-Black Hole Mass Correlation for Quasars from the FIRST Bright Quasar Survey and a “Unification Scheme” for Radio-loud and Radio-quiet Quasars , 2001, astro-ph/0103087.

[63]  A. Laor On Black Hole Masses and Radio Loudness in Active Galactic Nuclei , 2000, astro-ph/0009192.

[64]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[65]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[66]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[67]  T. Zwitter,et al.  Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei , 2000, The Astrophysical journal.

[68]  A. Laor Optical, UV, and X-ray clues to the nature of narrow-line AGNs , 2000, astro-ph/0005144.

[69]  M. Elvis A Structure for Quasars , 2000, astro-ph/0008064.

[70]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[71]  A. Wandel On the Baldwin Effect in Active Galactic Nuclei. I. The Continuum-Spectrum-Mass Relationship , 1999, astro-ph/9907301.

[72]  G. Ferland,et al.  The PG X-Ray QSO Sample: Links between the Ultraviolet-X-Ray Continuum and Emission Lines , 1999 .

[73]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[74]  L. Miller,et al.  A Comparison of the Optical Properties of Radio-loud and Radio-quiet Quasars , 1998, astro-ph/9810392.

[75]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[76]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[77]  J. Baldwin,et al.  Quasars as Cosmological Probes: The Ionizing Continuum, Gas Metallicity, and the Wλ-L Relation , 1998, astro-ph/9805338.

[78]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[79]  T. Boroson,et al.  Combined Ultraviolet and Optical Spectra of 48 Low-Redshift QSOs and the Relation of the Continuum and Emission-Line Properties , 1996 .

[80]  P. Marziani,et al.  Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei , 1996 .

[81]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[82]  P. Green The Relationship between the High-Energy Continuum and Emission Lines in Quasars: A Low-Redshift Sample , 1996, astro-ph/9603099.

[83]  N. Murray,et al.  Reverberation mapping and the disk wind model of the broad line region , 1995, astro-ph/9511006.

[84]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[85]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[86]  P. Hewett,et al.  The Soft X-Ray Properties of a Large Optical QSO Sample: ROSAT Observations of the Large Bright Quasar Survey , 1995 .

[87]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[88]  W. Brandt,et al.  Soft X-ray properties of narrow-line Seyfert 1 galaxies. , 1995, astro-ph/9504093.

[89]  Ian N. Evans,et al.  Steps toward determination of the size and structure of the broad-line region in active galatic nuclei. 8: an intensive HST, IUE, and ground-based study of NGC 5548 , 1995 .

[90]  B. Wilkes,et al.  The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results , 1994, astro-ph/9609164.

[91]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[92]  E. Colbert,et al.  The Difference between Radio-loud and Radio-quiet Active Galaxies , 1994, astro-ph/9408005.

[93]  Wei Zheng,et al.  Does a Luminosity-dependent Continuum Shape Cause the Baldwin Effect? , 1993 .

[94]  P. Conti,et al.  The 'Baldwin Effect' in Wolf-Rayet stars , 1993 .

[95]  Frederic H. Chaffee,et al.  An objective classification scheme for QSO spectra , 1992 .

[96]  T. Boroson,et al.  The optical properties of IR-selected and Mg II broad absorption line quasars , 1992 .

[97]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[98]  P. Hewett,et al.  A High Signal-to-Noise Ratio Composite Quasar Spectrum , 1991 .

[99]  Simon L. Morris,et al.  Comparisons of the Emission-Line and Continuum Properties of Broad Absorption Line and Normal Quasi-stellar Objects , 1991 .

[100]  M. Mayor,et al.  Active Galactic Nuclei: Saas-Fee Advanced Course 20. Lecture Notes 1990. Swiss Society for Astrophysics and Astronomy , 1991 .

[101]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[102]  D. Osterbrock,et al.  The spectra of narrow-line Seyfert 1 galaxies , 1985 .

[103]  R. Weymann,et al.  The radio properties of the broad-absorption-line QSOs , 1984 .

[104]  B. Wilkes Studies of broad emission line profiles in QSOs – I. Observed, high-resolution profiles , 1984 .

[105]  C. Gaskell Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .

[106]  H. Tananbaum,et al.  On the cosmological evolution of the X-ray emission from quasars , 1982 .

[107]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[108]  M. Malkan,et al.  The ultraviolet excess of Seyfert 1 galaxies and quasars. , 1982 .

[109]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[110]  P. Best,et al.  CO-EVOLUTION OF CENTRAL BLACK HOLES AND GALAXIES , 2010 .

[111]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[112]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[113]  H. Netzer,et al.  Quasar discs – III. Line and continuum correlations , 1992 .

[114]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.