Droplet breakage and coalescence in liquid–liquid dispersions: Comparison of different kernels with EQMOM and QMOM

Droplet coalescence and breakage in turbulent liquid-liquid dispersions is simulated by using computational fluid dynamics (CFD) and population balance modeling (PBM). The multifractal (MF) formalism that takes into account internal intermittency was here used for the first time to describe breakage and coalescence in a surfactant-free dispersion. The log-normal Extended Quadrature Method of Moments (EQMOM) was for the first time coupled with a CFD multiphase solver. To assess the accuracy of the model, predictions are compared with experiments and other models (i.e., Coulalogou and Tavlarides kernels and Quadrature Method of Moments, QMOM). EQMOM and QMOM resulted in similar predictions, but EQMOM provides a continuous reconstruction of the droplet size distribution. Transient predictions obtained with the MF kernels result in a better agreement with the experiments. This article is protected by copyright. All rights reserved.

[1]  J. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes , 1955 .

[2]  J. Wheeler,et al.  Modified moments and Gaussian quadratures , 1974 .

[3]  Lawrence L. Tavlarides,et al.  Drop size distributions and coalescence frequencies of liquid‐liquid dispersions in flow vessels , 1976 .

[4]  Lawrence L. Tavlarides,et al.  Description of interaction processes in agitated liquid-liquid dispersions , 1977 .

[5]  S. Saito,et al.  EFFECT OF DISPERSED-PHASE VISCOSITY ON THE MAXIMUM STABLE DROP SIZE FOR BREAKUP IN TURBULENT FLOW , 1977 .

[6]  J. P. Gupta,et al.  A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions , 1979 .

[7]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[8]  S. Saito,et al.  Scale effect on breakup process in liquid-liquid agitated tanks. , 1983 .

[9]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[10]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[11]  Richard V. Calabrese,et al.  Drop breakup in turbulent stirred‐tank contactors. Part I: Effect of dispersed‐phase viscosity , 1986 .

[12]  Dynamic simulation of agitated liquid-liquid dispersions. II: Experimental determination of breakage and coalescence rates in a stirred tank , 1987 .

[13]  COALESCENCE OF DISPERSED DROPS IN AN AGITATED TANK , 1988 .

[14]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[15]  D. Ramkrishna,et al.  Determination of coalescence frequencies in liquid—liquid dispersions: effect of drop size dependence , 1990 .

[16]  Ak Allen Chesters The modelling of coalescence processes in fluid-liquid dispersions : a review of current understanding , 1991 .

[17]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[18]  A. D. Gosman,et al.  Multidimensional modeling of turbulent two‐phase flows in stirred vessels , 1992 .

[19]  Sanjeev Kumar,et al.  A multi-stage model for drop breakage in stirred vessels , 1992 .

[20]  Sanjeev Kumar,et al.  A new model for coalescence efficiency of drops in stirred dispersions , 1993 .

[21]  Costas Tsouris,et al.  Breakage and coalescence models for drops in turbulent dispersions , 1994 .

[22]  A. Pacek,et al.  Video technique for measuring dynamics of liquid‐liquid dispersion during phase inversion , 1994 .

[23]  J. R. Bourne,et al.  Interpretation of turbulent mixing using fractals and multifractals , 1995 .

[24]  H. Svendsen,et al.  Theoretical model for drop and bubble breakup in turbulent dispersions , 1996 .

[25]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[26]  Jan Prüss,et al.  A population balance model for disperse systems: Drop size distribution in emulsion , 1998 .

[27]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[28]  Jerzy Bałdyga,et al.  Drop break‐up in intermittent turbulence: Maximum stable and transient sizes of drops , 1998 .

[29]  Aldo Tagliani,et al.  Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..

[30]  Juan C. Lasheras,et al.  On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency , 1999, Journal of Fluid Mechanics.

[31]  Modeling the effect of drop charge on coalescence in turbulent liquid—liquid dispersions , 1999 .

[32]  M. Kraume,et al.  Investigations of Local Drop Size Distributions and Scale-Up in Stirred Liquid-Liquid Dispersions , 2000 .

[33]  Dieter Mewes,et al.  A transport equation for the interfacial area density applied to bubble columns , 2001 .

[34]  Jerzy Bałdyga,et al.  Scale-up effects on the drop size distribution of liquid–liquid dispersions in agitated vessels , 2001 .

[35]  K. C. Lee,et al.  Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels , 2001 .

[36]  M. Wilck,et al.  A general approximation method for solving integrals containing a lognormal weighting function , 2001 .

[37]  Joakim Majander,et al.  Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 2—parameter fitting and the use of the multiblock model for dense dispersions , 2002 .

[38]  Gerassimos A. Athanassoulis,et al.  The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .

[39]  D. Mewes,et al.  Bubble‐Size distributions and flow fields in bubble columns , 2002 .

[40]  R. D. Vigil,et al.  Quadrature method of moments for aggregation-breakage processes. , 2003, Journal of colloid and interface science.

[41]  Jinfu Wang,et al.  A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow , 2003 .

[42]  Jesse T. Pikturna,et al.  Quadrature method of moments for population‐balance equations , 2003 .

[43]  R. I. Issa,et al.  Modelling of dispersed bubble and droplet flow at high phase fractions , 2004 .

[44]  Tiefeng Wang,et al.  An efficient numerical algorithm for A novel theoretical breakup kernel function of bubble/droplet in a turbulent flow , 2004 .

[45]  J. Aubin,et al.  Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme , 2004 .

[46]  Scale-up effects in coalescing dispersions—comparison of liquid–liquid systems differing in interface mobility , 2005 .

[47]  B. Brooks,et al.  Comparative Study of Particle Size in Suspension Polymerization and Corresponding Monomer-Water Dispersion , 2005 .

[48]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[49]  Bengt Andersson,et al.  On the breakup of fluid particles in turbulent flows , 2006 .

[50]  P. Das A stochastic model for breakage frequency of viscous drops in turbulent dispersions , 2006 .

[51]  W. Podgórska Modelling of high viscosity oil drop breakage process in intermittent turbulence , 2006 .

[52]  Ville Alopaeus,et al.  Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel , 2006 .

[53]  Ville Alopaeus,et al.  Modelling local bubble size distributions in agitated vessels , 2007 .

[54]  S. Maaß,et al.  Experimental investigations and modelling of breakage phenomena in stirred liquid/liquid systems , 2007 .

[55]  Influence of Dispersed Phase Viscosity on Drop Coalescence in Turbulent Flow , 2007 .

[56]  Eckhard Krepper,et al.  The inhomogeneous MUSIG model for the simulation of polydispersed flows , 2008 .

[57]  Luiz Fernando L. R. Silva,et al.  Implementation and analysis of numerical solution of the population balance equation in CFD packages , 2008, Comput. Chem. Eng..

[58]  Y. Liao,et al.  A literature review of theoretical models for drop and bubble breakup in turbulent dispersions , 2009 .

[59]  Y. Liao,et al.  A literature review on mechanisms and models for the coalescence process of fluid particles , 2010 .

[60]  Marc Massot,et al.  A Robust Moment Method for Evaluation of the Disappearance Rate of Evaporating Sprays , 2010, SIAM J. Appl. Math..

[61]  Chinmay V. Rane,et al.  CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers , 2011 .

[62]  C. Yuan,et al.  Conditional quadrature method of moments for kinetic equations , 2011, J. Comput. Phys..

[63]  Fouad Azizi,et al.  Turbulently flowing liquid-liquid dispersions. Part I: Drop breakage and coalescence , 2011 .

[64]  Paulo L. C. Lage,et al.  On the representation of QMOM as a weighted-residual method - The dual-quadrature method of generalized moments , 2011, Comput. Chem. Eng..

[65]  Alberto Passalacqua,et al.  Implementation of an iterative solution procedure for multi-fluid gas–particle flow models on unstructured grids , 2011 .

[66]  F. Laurent,et al.  An extended quadrature method of moments for population balance equations , 2003 .

[67]  S. Maaß,et al.  DETERMINATION OF BREAKAGE RATES USING SINGLE DROP EXPERIMENTS , 2012 .

[68]  W. Podgórska,et al.  Investigation of drop breakage and coalescence in the liquid–liquid system with nonionic surfactants Tween 20 and Tween 80 , 2012 .

[69]  Rochan Upadhyay Evaluation of the use of the Chebyshev algorithm with the quadrature method of moments for simulating aerosol dynamics , 2012 .

[70]  Jeremy N. Thornock,et al.  Large Eddy Simulation of Pulverized Coal Jet Flame Ignition Using the Direct Quadrature Method of Moments , 2012 .

[71]  Paola Lettieri,et al.  New quadrature‐based moment method for the mixing of inert polydisperse fluidized powders in commercial CFD codes , 2012 .

[72]  Daniele Marchisio,et al.  Simulation of polydisperse multiphase systems using population balances and example application to bubbly flows , 2013 .

[73]  He’an Luo,et al.  A novel theoretical model of breakage rate and daughter size distribution for droplet in turbulent flows , 2013 .

[74]  W. Podgórska,et al.  Drop breakage and coalescence in the toluene/water dispersions with dissolved surface active polymers PVA 88% and 98% , 2013 .

[75]  François Puel,et al.  Development of a CFD-PBE coupled model for the simulation of the drops behaviour in a pulsed column , 2014 .

[76]  Number Density of Turbulent Vortices in the Entire Energy Spectrum , 2014 .

[77]  A Quadrature Method of Moments for Polydisperse Flow in Bubble Columns Including Poly-celerity, Breakup and Coalescence , 2014 .

[78]  C. Frances,et al.  Comminution process modeling based on the monovariate and bivariate direct quadrature method of moments , 2014 .

[79]  Alberto Passalacqua,et al.  An extended quadrature‐based mass‐velocity moment model for polydisperse bubbly flows , 2014 .

[80]  He’an Luo,et al.  Influence of energy spectrum distribution on drop breakage in turbulent flows , 2014 .

[81]  Hugo A. Jakobsen,et al.  Single drop breakup experiments in stirred liquid–liquid tank , 2015 .

[82]  Sandipan Das Development of a coalescence model due to turbulence for the population balance equation , 2015 .

[83]  S. Shahhosseini,et al.  Using maximum entropy approach for prediction of drop size distribution in a pilot plant multi-impeller extraction contactor , 2015 .

[84]  Tiziano Faravelli,et al.  Modeling soot formation in premixed flames using an Extended Conditional Quadrature Method of Moments , 2015 .

[85]  M. Šoóš,et al.  Characterization of liquid‐liquid dispersions with variable viscosity by coupled computational fluid dynamics and population balances , 2015 .

[86]  Hans-Jörg Bart,et al.  CFD-population balance modeling and simulation of coupled hydrodynamics and mass transfer in liquid extraction columns , 2015 .

[87]  A. Passalacqua,et al.  An extended quadrature-based moment method with log-normal kernel density functions , 2015 .

[88]  Mohd Izzudin Izzat Zainal Abidin,et al.  Mean Drop Size Correlations and Population Balance Models for Liquid-Liquid Dispersion , 2015 .

[89]  J. Solsvik,et al.  A theoretical study on drop breakup modeling in turbulent flows: The inertial subrange versus the entire spectrum of isotropic turbulence , 2016 .

[90]  W. Podgórska,et al.  Influence of poly(vinyl alcohol) molecular weight on drop coalescence and breakage rate , 2016 .

[91]  S. Maaß,et al.  On droplets size distribution in a pulsed column. Part I: In-situ measurements and corresponding CFD–PBE simulations , 2016 .

[92]  W. Podgórska,et al.  Modeling of turbulent drop coalescence in the presence of electrostatic forces , 2016 .

[93]  Zhengming Gao,et al.  Simulation of droplet breakage in turbulent liquid–liquid dispersions with CFD-PBM: Comparison of breakage kernels , 2016 .

[95]  Development of Fluid Particle Breakup and Coalescence Closure Models for the Complete Energy Spectrum of Isotropic Turbulence , 2016 .

[96]  Daniele Marchisio,et al.  On the implementation of moment transport equations in OpenFOAM: Boundedness and realizability , 2016 .

[97]  S. Maaß,et al.  Definition of the Single Drop Breakup Event , 2016 .

[98]  A. Buffo,et al.  Simplified volume-averaged models for liquid–liquid dispersions: Correct derivation and comparison with other approaches , 2016 .