Disorder-Assisted Error Correction in Majorana Chains

It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions — the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate the storage process for chains with a few hundred sites. Our numerical results indicate that in the absence of disorder, the storage time grows only as a logarithm of the system size. We provide numerical evidence for the beneficial effect of disorder on storage times and show that suitably chosen pseudorandom potentials can outperform random ones.

[1]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[2]  T. Osborne,et al.  Interplay of topological order and spin glassiness in the toric code under random magnetic fields , 2010, 1004.4632.

[3]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[4]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[5]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[6]  P. Calabrese,et al.  Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators , 2011, Physical review letters.

[7]  James R. Wootton,et al.  Bringing order through disorder: localization of errors in topological quantum memories. , 2011, Physical review letters.

[8]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[9]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[11]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[12]  Werner Kirsch,et al.  An Invitation to Random Schr¨ odinger operators , 2007 .

[13]  Y. Suhov,et al.  Eigenfunctions in a Two-Particle Anderson Tight Binding Model , 2008, 0810.2190.

[14]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[15]  Cyril J. Stark,et al.  Localization of toric code defects. , 2011, Physical review letters.

[16]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[17]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[18]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[19]  Quantum Self-Correcting Stabilizer Codes , 2008, 0810.3557.

[20]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[21]  Claudio Chamon,et al.  Toric-boson model: Toward a topological quantum memory at finite temperature , 2008, 0812.4622.

[22]  H. Kunz,et al.  One-dimensional wave equations in disordered media , 1983 .

[23]  M. Hastings Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance , 2010, 1001.5280.

[24]  Barbara M. Terhal,et al.  Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes , 2009, 0907.2807.

[25]  Y. Lévy,et al.  Anderson localization for one- and quasi-one-dimensional systems , 1985 .

[26]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[27]  N. Brenner,et al.  Pseudo-randomness and localization , 1992 .

[28]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[29]  M. B. Hastings,et al.  A Short Proof of Stability of Topological Order under Local Perturbations , 2010, 1001.4363.

[30]  C. Beenakker,et al.  The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation , 2011, 1105.0315.

[31]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[32]  G. Stolz,et al.  An Introduction to the Mathematics of Anderson Localization , 2011, 1104.2317.

[33]  A Short Course on One-Dimensional Random Schr\ , 2011, 1107.1094.

[34]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[35]  T. P. Eggarter,et al.  Singular behavior of tight-binding chains with off-diagonal disorder , 1978 .

[36]  Parsa Bonderson,et al.  Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. , 2011, Physical review letters.

[37]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[38]  W. Kirsch An Invitation to Random Schroedinger operators , 2007, 0709.3707.

[39]  D. Loss,et al.  Self-correcting quantum memory in a thermal environment , 2009, 0908.4264.

[40]  H. Furstenberg Noncommuting random products , 1963 .

[41]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[42]  J. Ignacio Cirac,et al.  Limitations of passive protection of quantum information , 2009, Quantum Inf. Comput..

[43]  A. Kay Capabilities of a perturbed toric code as a quantum memory. , 2011, Physical review letters.

[44]  John Preskill,et al.  Interface between topological and superconducting qubits. , 2010, Physical review letters.

[45]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[46]  David A. Rand,et al.  One-dimensional schrodinger equation with an almost periodic potential , 1983 .

[47]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[48]  M. Aizenman,et al.  Localization Bounds for Multiparticle Systems , 2008, 0809.3436.

[49]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[50]  J. Nilsson,et al.  Probing Majorana edge states with a flux qubit , 2011, 1101.0604.

[51]  B. Simon,et al.  Localization for off-diagonal disorder and for continuous Schrödinger operators , 1987 .

[52]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[53]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[54]  Fabian H. L. Essler,et al.  Quantum quench in the transverse-field Ising chain. , 2011 .

[55]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[56]  Tobias J. Osborne Simulating adiabatic evolution of gapped spin systems , 2007 .

[57]  Griniasty,et al.  Localization by pseudorandom potentials in one dimension. , 1988, Physical review letters.

[58]  S. Bravyi,et al.  Energy landscape of 3D spin Hamiltonians with topological order. , 2011, Physical review letters.

[59]  M. B. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005 .