Numerical Methods for Linear Quadratic and H∞ Control Problems

The numerical solution of linear quadratic control problems and H ∞ control problems is of great importance in the design of controllers, in particular when robust controllers are desired, [19, 27, 38, 33, 40].

[1]  Vlad Ionescu,et al.  Generalized Riccati theory and robust control , 1999 .

[2]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[3]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[4]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[5]  Christian Mehl,et al.  Compatible lie and Jordan algebras and applications to structured matrices and pencils , 1999 .

[6]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[7]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  A. Laub,et al.  Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..

[10]  R. Byers,et al.  Descriptor Systems Without Controllability at Infinity , 1997 .

[11]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[12]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[13]  Adam W. Bojanczyk,et al.  Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.

[14]  A. Bunse-Gerstner,et al.  Numerical Methods for Algebraic Riccati Equations , 1989 .

[15]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[16]  Volker Mehrmann,et al.  Numerical solution of differential algebraic riccati equations , 1990 .

[17]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[18]  V. Mehrmann,et al.  On Hamiltonian and symplectic Hessenberg forms , 1991 .

[19]  R. Hartwig,et al.  Products of EP elements in reflexive semigroups , 1976 .

[20]  C. Loan,et al.  A Schur decomposition for Hamiltonian matrices , 1981 .

[21]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[22]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[23]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[24]  Vlad Ionescu,et al.  Continuous and discrete-time Riccati theory: A Popov-function approach , 1993 .

[25]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[26]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[27]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[28]  Ralph Byers,et al.  Hamiltonian and symplectic algorithms for the algebraic riccati equation , 1983 .

[29]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[30]  C. Oara,et al.  Generalized Riccati Theory and Robust Control. A Popov Function Approach , 1999 .

[31]  V. Mehrmann,et al.  A MULTISHIFT ALGORITHM FOR THE NUMERICAL SOLUTION OF ALGEBRAIC RICCATI EQUATIONS , 1993 .

[32]  Volker Mehrmann,et al.  The linear quadratic optimal control problem for linear descriptor systems with variable coefficients , 1997, Math. Control. Signals Syst..

[33]  Angelika Bunse-Gerstner,et al.  A Jacobi-like method for solving algebraic Riccati equations on parallel computers , 1997, IEEE Trans. Autom. Control..

[34]  Christian Mehl,et al.  Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils , 1999, SIAM J. Matrix Anal. Appl..

[35]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[36]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[37]  Peter Benner,et al.  HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using , 1998 .

[38]  R. Byers A Hamiltonian $QR$ Algorithm , 1986 .

[39]  S. Bittanti,et al.  The Riccati equation , 1991 .

[40]  Mihail M. Konstantinov,et al.  Computational methods for linear control systems , 1991 .

[41]  A. Laub,et al.  Generalized eigenproblem algorithms and software for algebraic Riccati equations , 1984, Proceedings of the IEEE.

[42]  T. Chan Rank revealing QR factorizations , 1987 .

[43]  Alan J. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[44]  Gene H. Golub,et al.  Matrix computations , 1983 .