Synthesis and Characterization of Placental Chondroitin Sulfate A (plCSA)-Targeting Lipid-Polymer Nanoparticles.

An effective cancer therapeutic method reduces and eliminates tumors with minimal systemic toxicity. Actively targeting nanoparticles offer a promising approach to cancer therapy. The glycosaminoglycan placental chondroitin sulfate A (plCSA) is expressed on a wide range of cancer cells and placental trophoblasts, and malarial protein VAR2CSA can specifically bind to plCSA. A reported placental chondroitin sulfate A binding peptide (plCSA-BP), derived from malarial protein VAR2CSA, can also specifically bind to plCSA on cancer cells and placental trophoblasts. Hence, plCSA-BP-conjugated nanoparticles could be used as a tool for targeted drug delivery to human cancers and placental trophoblasts. In this protocol, we describe a method to synthesize plCSA-BP-conjugated lipid-polymer nanoparticles loaded with doxorubicin (plCSA-DNPs); the method consists of a single sonication step and bioconjugate techniques. In addition, several methods for characterizing plCSA-DNPs, including determining their physicochemical properties and cellular uptake by placental choriocarcinoma (JEG3) cells, are described.