Forecasting a chaotic time series using an improved metric for embedding space

[1]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[2]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[3]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[4]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[5]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[6]  D. Rand,et al.  Dynamical Systems and Turbulence, Warwick 1980 , 1981 .

[7]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[8]  H. Schuster Deterministic chaos: An introduction , 1984 .

[9]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[10]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[11]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[12]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[13]  Gerd Pfister,et al.  Optimal Reconstruction of Strange Attractors from Purely Geometrical Arguments , 1990 .

[14]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[15]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[16]  H. Abarbanel,et al.  Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  R. Eykholt,et al.  Estimating the Lyapunov-exponent spectrum from short time series of low precision. , 1991, Physical review letters.

[18]  H. Abarbanel,et al.  Noise reduction in chaotic time series using scaled probabilistic methods , 1991 .

[19]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[20]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[21]  Jiménez,et al.  Forecasting on chaotic time series: A local optimal linear-reconstruction method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  Leonard A. Smith Identification and prediction of low dimensional dynamics , 1992 .

[23]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .