Nanocrystal Size and Quantum Yield in the Upconversion of Green to Violet Light with CdSe and Anthracene Derivatives

We investigate the parameters affecting the upconversion of visible light in a hybrid organic–inorganic system based on CdSe nanocrystal (NC) sensitizers, 9-anthracene carboxylic acid (9-ACA) transmitter, and diphenylanthracene (DPA) annihilator. Seven wurtzite CdSe NCs ranging in photoluminescence quantum yield (PLQY) from 2.0% to 11%, and in diameter from 2.7 to 5.1 nm, were used in combination with the 9-ACA and DPA molecules. Using 2.7 nm diameter CdSe NCs, we show that the upconversion quantum yield has a quadratic to linear dependence on NC sensitizer concentration. Additionally, upconversion efficiency correlates positively with 9-ACA surface coverage on CdSe NCs and NC PLQY but negatively with particle size. This work clearly illustrates the path toward designing nanocrystal–molecule combinations with high upconversion efficiency that have potential applications in the fields of bioimaging, solar energy conversion, and data storage.

[1]  G. Pau,et al.  Ligand Binding to Distinct Sites on Nanocrystals Affecting Energy and Charge Transfer. , 2015, The journal of physical chemistry letters.

[2]  Taeghwan Hyeon,et al.  Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. , 2015, Chemical Society reviews.

[3]  Wei Feng,et al.  Upconversion luminescent materials: advances and applications. , 2015, Chemical reviews.

[4]  Dongzhi Chi,et al.  Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis , 2014, Nanotechnology.

[5]  Timothy W Schmidt,et al.  Photochemical Upconversion: The Primacy of Kinetics. , 2014, The journal of physical chemistry letters.

[6]  E. Weiss,et al.  Chemical, Structural, and Quantitative Analysis of the Ligand Shells of Colloidal Quantum Dots , 2013 .

[7]  Z. Hens,et al.  A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals , 2013 .

[8]  Oleksandr Voznyy,et al.  A charge-orbital balance picture of doping in colloidal quantum dot solids. , 2012, ACS nano.

[9]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[10]  Maxwell J. Crossley,et al.  Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector , 2012 .

[11]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[12]  P. Juhás,et al.  Tuning the Surface Structure and Optical Properties of CdSe Clusters Using Coordination Chemistry. , 2011, The journal of physical chemistry letters.

[13]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[14]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[15]  M. Cossi,et al.  Density Functional Theory Modeling of PbSe Nanoclusters: Effect of Surface Passivation on Shape and Composition , 2011 .

[16]  Qiang Zhao,et al.  Binding of phosphonic acids to CdSe quantum dots : a solution NMR study , 2011 .

[17]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[18]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[19]  Francesco Scotognella,et al.  Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold , 2008 .

[20]  Raymond Ziessel,et al.  Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. , 2008, Journal of the American Chemical Society.

[21]  Stanislav Baluschev,et al.  Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. , 2008, Chemistry.

[22]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[23]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[24]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[25]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[26]  F. Wise,et al.  Electronic structure and optical properties of PbS and PbSe quantum dots , 1997 .

[27]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[28]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[29]  Norris,et al.  Observation of the "Dark exciton" in CdSe quantum dots. , 1995, Physical review letters.

[30]  A. Mishra,et al.  Static and dynamic model for 1-naphthol fluorescence quenching by carbon tetrachloride in dioxane—acetonitrile mixtures , 1993 .

[31]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[32]  W. Ware,et al.  Wavelength Effects in Fluorescence Quenching. Aromatic Hydrocarbons Quenched by Carbon Tetrachloride , 1972 .

[33]  W. Ware,et al.  Wavelength effects in fluorescence quenching: the anthracene-carbon tetrachloride system , 1972 .

[34]  C. Garrett,et al.  Two-Photon Excitation in CaF 2 : Eu 2+ , 1961 .

[35]  Timothy W. Schmidt,et al.  Photochemical upconversion: present status and prospects for its application to solar energy conversion , 2015 .

[36]  Y. Leng,et al.  Yb3+-doped fluorophosphate glass with high cross section and lifetime , 2010 .

[37]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[38]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .