MIMO SAR using Chirp Diverse Waveform for Wide-Swath Remote Sensing

Synthetic aperture radar (SAR) is a well-proven remote sensing technique; however, current single-antenna SAR systems cannot fulfill the increasing demands of future remote sensing in high-resolution and wide-swath imaging performance. This paper presents a scheme of multiple-input and multiple-output (MIMO) SAR using chirp diverse waveform for wide-swath remote sensing. This approach employs MIMO antenna configuration in elevation which is divided into multiple subpertures. In this way, multiple pairs of transmit-receive virtual beams directing to different subswathes are formed simultaneously. Equivalently a large swath is synthesized. The corresponding system scheme, chirp diverse waveform design, multi-beam forming algorithm and range ambiguity performance are investigated. A chirp-scaling-based image formation algorithm is presented to focus the MIMO SAR simulation data. Comprehensive numerical simulation examples are performed. It is shown that the proposed method enables the SAR systems to operate with high flexibility and reconfigurability which is particularly attractive for next generation remote sensing technique.

[1]  Jian Li,et al.  Waveform Synthesis for Diversity-Based Transmit Beampattern Design , 2007 .

[2]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  P. P. Vaidyanathan,et al.  MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter , 2009, IEEE Transactions on Signal Processing.

[4]  Gerhard Krieger,et al.  Azimuth Phase Center Adaptation on Transmit for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Geoscience and Remote Sensing Letters.

[5]  Zheng Bao,et al.  Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems , 2005, IEEE Geosci. Remote. Sens. Lett..

[6]  Rick S. Blum,et al.  MIMO radar waveform design based on mutual information and minimum mean-square error estimation , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[7]  S. Safavi-Naeini,et al.  Fast Beamforming for Mobile Satellite Receiver Phased Arrays: Theory and Experiment , 2009, IEEE Transactions on Antennas and Propagation.

[8]  L. Landi,et al.  Time-orthogonal-waveform-space-time adaptive processing for distributed aperture radars , 2007, 2007 International Waveform Diversity and Design Conference.

[9]  I. Longstaff,et al.  Wide-swath space-borne SAR using a quad-element array , 1999 .

[10]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[11]  Jian Li,et al.  Target detection and parameter estimation for MIMO radar systems , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[12]  A. Jain,et al.  Multibeam synthetic aperture radar for global oceanography , 1979 .

[13]  M. Picciolo,et al.  Adaptive LFM waveform diversity , 2008, 2008 IEEE Radar Conference.

[14]  Wen-Qin Wang,et al.  Conceptual design of near-space synthetic aperture radar for high-resolution and wide-swath imaging , 2009 .

[15]  P. P. Vaidyanathan,et al.  MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions , 2008, IEEE Transactions on Signal Processing.

[16]  G. Krieger,et al.  Potential of digital beamforming in bi- and multistatic SAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[17]  Daniel W. Bliss,et al.  Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[18]  Zheng Bao,et al.  A novel approach for wide‐swath and high‐resolution SAR image generation from distributed small spaceborne SAR systems , 2006 .

[19]  B. Himed,et al.  A Virtual Antenna Beamforming (VAB) Approach for Radar Systems by Using Orthogonal Coding Waveforms , 2009, IEEE Transactions on Antennas and Propagation.

[20]  Elbrous M. Jafarov,et al.  Robust sliding-mode control for the uncertain MIMO aircraft model F-18 , 2000, IEEE Trans. Aerosp. Electron. Syst..

[21]  Bo Liu Orthogonal Discrete Frequency-Coding Waveform Set Design with Minimized Autocorrelation Sidelobes , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Muralidhar Rangaswamy,et al.  Signaling Strategies for the Hybrid MIMO Phased-Array Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[23]  Hao He,et al.  Designing Unimodular Sequence Sets With Good Correlations—Including an Application to MIMO Radar , 2009, IEEE Transactions on Signal Processing.

[24]  Werner Wiesbeck,et al.  SDRS: software-defined radar sensors , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[25]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[26]  Wenqin Wang Applications of MIMO Technique for Aerospace Remote Sensing , 2007, 2007 IEEE Aerospace Conference.

[27]  Jian Li,et al.  Signal Synthesis and Receiver Design for MIMO Radar Imaging , 2008, IEEE Transactions on Signal Processing.

[28]  Chibiao Ding,et al.  Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems , 2008 .

[29]  王文钦,et al.  Time and phase synchronization via direct-path signal for bistatic synthetic aperture radar system , 2010 .

[30]  R Firat Tigrek,et al.  Compensation of Range Migration for Cyclically Repetitive Doppler-Sensitive Waveform (OFDM) , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Wenqin Wang,et al.  Approach of Adaptive Synchronization for Bistatic SAR Real-Time Imaging , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Wen-qin Wang GPS-Based Time & Phase Synchronization Processing for Distributed SAR , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[34]  S. Ret APPROVED FOR RELEASE , 2003 .

[35]  R.L. Fante,et al.  Phase-coded waveforms for radar , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[36]  B. Friedlander,et al.  Waveform Design for MIMO Radars , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[37]  S. Kay,et al.  Waveform Design for Multistatic Radar Detection , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[38]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[39]  Fred Daum,et al.  MIMO radar: Snake oil or good idea? , 2008, 2009 International Waveform Diversity and Design Conference.

[40]  M. Nayebi,et al.  Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio , 2009 .

[41]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[43]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[44]  D. Fuhrmann,et al.  Transmit beamforming for MIMO radar systems using signal cross-correlation , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[45]  W. Wiesbeck,et al.  Tapering of Multitransmit Digital Beamforming Arrays , 2008, IEEE Transactions on Antennas and Propagation.

[46]  A. Papandreou-Suppappola,et al.  Waveform design and scheduling for agile sensors for target tracking , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[47]  Daniel W. Bliss,et al.  MIMO Radar Waveform Constraints for GMTI , 2010, IEEE Journal of Selected Topics in Signal Processing.

[48]  Nathan A. Goodman,et al.  Processing of multiple-receiver spaceborne arrays for wide-area SAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[49]  A. De Maio,et al.  Design Principles of MIMO Radar Detectors , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[50]  Qian He,et al.  MIMO Radar Moving Target Detection in Homogeneous Clutter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[51]  Zheng Bao,et al.  Performance improvement for constellation SAR using signal processing techniques , 2006 .