Supervised Learning in Adaptive DNA Strand Displacement Networks.

The development of engineered biochemical circuits that exhibit adaptive behavior is a key goal of synthetic biology and molecular computing. Such circuits could be used for long-term monitoring and control of biochemical systems, for instance, to prevent disease or to enable the development of artificial life. In this article, we present a framework for developing adaptive molecular circuits using buffered DNA strand displacement networks, which extend existing DNA strand displacement circuit architectures to enable straightforward storage and modification of behavioral parameters. As a proof of concept, we use this framework to design and simulate a DNA circuit for supervised learning of a class of linear functions by stochastic gradient descent. This work highlights the potential of buffered DNA strand displacement as a powerful circuit architecture for implementing adaptive molecular systems.

[1]  Matthew R. Lakin,et al.  Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. , 2014, Angewandte Chemie.

[2]  Chrisantha Fernando,et al.  Molecular circuits for associative learning in single-celled organisms , 2008, Journal of The Royal Society Interface.

[3]  Matthew R. Lakin,et al.  Supervised Learning in an Adaptive DNA Strand Displacement Circuit , 2015, DNA.

[4]  Matthew R. Lakin,et al.  Design of a biochemical circuit motif for learning linear functions , 2014, Journal of The Royal Society Interface.

[5]  Vladimir Privman,et al.  Enzyme-based logic systems for information processing. , 2009, Chemical Society reviews.

[6]  H. L. Armus,et al.  Discrimination Learning in Paramecia (P. caudatum) , 2006 .

[7]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[8]  Luca Cardelli Strand Algebras for DNA Computing , 2009, DNA.

[9]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[10]  Erik Winfree,et al.  Leakless DNA Strand Displacement Systems , 2015, DNA.

[11]  Erik Winfree,et al.  Stochastic Simulation of the Kinetics of Multiple Interacting Nucleic Acid Strands , 2015, DNA.

[12]  François Fages,et al.  Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications , 2015, PloS one.

[13]  Luca Cardelli Two-domain DNA strand displacement , 2013, Math. Struct. Comput. Sci..

[14]  Matthew R. Lakin,et al.  Biophysically Inspired Rational Design of Structured Chimeric Substrates for DNAzyme Cascade Engineering , 2014, PloS one.

[15]  D. A. Baxter,et al.  Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms , 2002, Science.

[16]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[17]  D. Stefanovic,et al.  Exercises in Molecular Computing , 2014, Accounts of chemical research.

[18]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[19]  V. Kulkarni,et al.  Computational design of nucleic acid feedback control circuits. , 2014, ACS synthetic biology.

[20]  Christof Teuscher,et al.  An Analog Chemical Circuit with Parallel-Accessible Delay Line for Learning Temporal Tasks , 2014, ALIFE.

[21]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[22]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[23]  Vladimir Privman,et al.  Can bio‐inspired information processing steps be realized as synthetic biochemical processes? , 2014, 1411.1917.

[24]  Matthew R. Lakin,et al.  Catalytic Molecular Logic Devices by DNAzyme Displacement , 2014, Chembiochem : a European journal of chemical biology.

[25]  Martin Howard,et al.  Arabidopsis plants perform arithmetic division to prevent starvation at night , 2013, eLife.

[26]  K Oishi,et al.  Biomolecular implementation of linear I/O systems. , 2011, IET systems biology.

[27]  Milan N. Stojanovic,et al.  Autonomous Molecular Cascades for Evaluation of Cell Surfaces , 2013, Nature nanotechnology.

[28]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[29]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[30]  Christof Teuscher,et al.  Training an asymmetric signal perceptron through reinforcement in an artificial chemistry , 2014, Journal of The Royal Society Interface.

[31]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[32]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[33]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[34]  Teruo Fujii,et al.  Scaling down DNA circuits with competitive neural networks , 2013, Journal of The Royal Society Interface.

[35]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[36]  Luca Cardelli,et al.  Abstractions for DNA circuit design , 2011, Journal of The Royal Society Interface.

[37]  A. Fauci,et al.  Emerging Infectious Diseases: Threats to Human Health and Global Stability , 2013, PLoS pathogens.

[38]  Christof Teuscher,et al.  Learning Two-Input Linear and Nonlinear Analog Functions with a Simple Chemical System , 2014, UCNC.

[39]  Phil Husbands,et al.  Evolution of Associative Learning in Chemical Networks , 2012, PLoS Comput. Biol..

[40]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[41]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[42]  Evgeny Katz,et al.  Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept , 2010, Analytical and bioanalytical chemistry.

[43]  Matthew R. Lakin,et al.  Bioinformatics Applications Note Systems Biology Visual Dsd: a Design and Analysis Tool for Dna Strand Displacement Systems , 2022 .

[44]  Georg Seelig,et al.  DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits , 2010, DNA.

[45]  Christof Teuscher,et al.  Online Learning in a Chemical Perceptron , 2013, Artificial Life.