FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT

We present a model for the formation of massive black holes (~1000 M ☉) due to stellar-dynamical processes in the first stellar clusters formed at early cosmic times (z ~ 10-20). These black holes are likely candidates as seeds for the supermassive black holes detected in quasars and nearby quiescent galaxies. The high redshift black hole seeds form as a result of multiple successive instabilities that occur in low metallicity (Z ~ 10–5 Z ☉) protogalaxies. We focus on relatively massive halos at high redshift (T vir > 104 K, z 10) after the very first stars in the universe have completed their evolution. This set of assumptions ensures that (1) atomic hydrogen cooling can contribute to the gas cooling process, (2) a UV field has been created by the first stars, and (3) the gas inside the halo has been mildly polluted by the first metals. The second condition implies that at low density H 2 is dissociated and does not contribute to cooling. The third condition sets a minimum threshold density for fragmentation, so that stars form efficiently only in the very inner core of the protogalaxy. Within this core, very compact stellar clusters form. The typical star cluster masses are of order 105 M ☉ and the typical half mass radii ~1 pc. A large fraction of these very dense clusters undergoes core collapse before stars are able to complete stellar evolution. Runaway star-star collisions eventually lead to the formation of a very massive star, leaving behind a massive black hole remnant. Clusters unstable to runaway collisions are always the first, less massive ones that form. As the metallicity of the universe increases, the critical density for fragmentation decreases and stars start to form in the entire protogalactic disk so that (1) accretion of gas in the center is no longer efficient and (2) the core collapse timescale increases. Typically, a fraction ~0.05 of protogalaxies at z ~ 10-20 form black hole seeds, with masses ~1000-2000 M ☉, leading to a mass density in seeds of a few 102 M ☉/Mpc–3. This density allows enough room for black hole growth by accretion during the quasar epoch.

[1]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[2]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[3]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[4]  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, astro-ph/0007176.

[5]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[6]  P. Bodenheimer,et al.  Stellar Structure of Dark Stars: A First Phase of Stellar Evolution Resulting from Dark Matter Annihilation , 2008, 0806.0617.

[7]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[8]  B. O’Shea,et al.  DARK MATTER ANNIHILATION AND PRIMORDIAL STAR FORMATION , 2008, 0807.3769.

[9]  The fragmentation of pre-enriched primordial objects , 2001 .

[10]  A. de Koter,et al.  On the evolution and fate of super-massive stars , 2007, 0710.1181.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  J. Shull,et al.  Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars , 2005, astro-ph/0509101.

[13]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[14]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[15]  Quasars at z = 6 : The survival of the fittest , 2006, astro-ph/0607093.

[16]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[17]  Self-similar Collapse of a Self-gravitating Viscous Disk , 1997, astro-ph/9701189.

[18]  K. Freese,et al.  Dark matter and the first stars: a new phase of stellar evolution. , 2007, Physical review letters.

[19]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[20]  Department of Physics,et al.  The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe , 2006 .

[21]  M. Rees,et al.  The fate of dense stellar systems , 1978 .

[22]  Junichiro Makino,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[23]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[24]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[25]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[26]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[27]  S. M. Fall,et al.  Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation* , 2004, astro-ph/0409234.

[28]  Volker Bromm,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2002 .

[29]  Benedetta Ciardi,et al.  The First Cosmic Structures and Their Effects , 2004 .

[30]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[31]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[32]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes. III - Evolution calculations , 1979 .

[33]  Douglas P. Hamilton,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[34]  B. O’Shea,et al.  THREE MODES OF METAL-ENRICHED STAR FORMATION IN THE EARLY UNIVERSE , 2008, 0806.1653.

[35]  B. O’Shea,et al.  Population III Star Formation in a ΛCDM Universe. II. Effects of a Photodissociating Background , 2007, 0706.4416.

[36]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[37]  Tom Abel,et al.  The Formation and Fragmentation of Primordial Molecular Clouds , 1999 .

[38]  Nucleosynthesis, Reionization, and the Mass Function of the First Stars , 2004, astro-ph/0401376.

[39]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[40]  Very low-metallicity massive stars: - Pre-SN evolution models and primary nitrogen production , 2006, astro-ph/0608170.

[41]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[42]  R. Schneider,et al.  The Detectability of the First Stars and Their Cluster Enrichment Signatures , 2003, astro-ph/0301628.

[43]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[44]  J. Wise Resolving the Formation of Protogalaxies , 2008, 0804.4156.

[45]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[46]  Li-Xin Li Probing the Cosmic Metallicity Evolution with Gamma-Ray Bursts , 2007 .

[47]  Early Enrichment of the Intergalactic Medium and Its Feedback on Galaxy Formation , 2002, astro-ph/0201463.

[48]  Bromm,et al.  Forming the First Stars in the Universe: The Fragmentation of Primordial Gas. , 1999, The Astrophysical journal.

[49]  C. Gammie Linear Theory of Magnetized, Viscous, Self-gravitating Gas Disks , 1996 .

[50]  M. Begelman,et al.  The fuelling of active galactic nuclei , 1990, Nature.

[51]  R. Klessen,et al.  The First Stellar Cluster , 2007, 0706.0613.

[52]  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[53]  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[54]  V. Springel,et al.  The first generation of stars in the Λ cold dark matter cosmology , 2006, astro-ph/0610174.

[55]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[56]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[57]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[58]  Jason X. Prochaska,et al.  Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .

[59]  Origin of quasar progenitors from the collapse of low spin cosmological perturbations , 1994, astro-ph/9401016.

[60]  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[61]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[62]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[63]  Martin J. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[64]  R. Schneider,et al.  Population III stars: hidden or disappeared? , 2007, 0707.1433.

[65]  P. J. Armitage,et al.  Investigating fragmentation conditions in self-gravitating accretion discs , 2005 .

[66]  G. Lodato,et al.  The response of self‐gravitating protostellar discs to slow reduction in cooling time‐scale: the fragmentation boundary revisited , 2007, 0708.0742.

[67]  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[68]  Li-Xin Li,et al.  Star formation history up to z = 7.4: implications for gamma-ray bursts and cosmic metallicity evolution , 2007, 0710.3587.

[69]  Heidelberg,et al.  Formation of Massive Black Holes in Dense Star Clusters , 2003 .

[70]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[71]  Z. Haiman,et al.  On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars , 1998, astro-ph/9810426.