A New Standard for Assessing the Performance of High Contrast Imaging Systems

As planning for the next generation of high contrast imaging instruments (e.g. WFIRST, HabEx, and LUVOIR, TMT-PFI, EELT-EPICS) matures, and second-generation ground-based extreme adaptive optics facilities (e.g. VLT-SPHERE, Gemini-GPI) are halfway through their principal surveys, it is imperative that the performance of different designs, post-processing algorithms, observing strategies, and survey results be compared in a consistent, statistically robust framework. In this paper, we argue that the current industry standard for such comparisons -- the contrast curve -- falls short of this mandate. We propose a new figure of merit, the "performance map," that incorporates three fundamental concepts in signal detection theory: the true positive fraction (TPF), false positive fraction (FPF), and detection threshold. By supplying a theoretical basis and recipe for generating the performance map, we hope to encourage the widespread adoption of this new metric across subfields in exoplanet imaging.

[1]  D. Fantinel,et al.  First light of the VLT planet finder SPHERE - III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system , 2015, 1511.04083.

[2]  C. Aime,et al.  Speckle Noise and Dynamic Range in Coronagraphic Images , 2007, 0706.1739.

[3]  Russell B. Makidon,et al.  Temporal Evolution of Coronagraphic Dynamic Range and Constraints on Companions to Vega , 2006, astro-ph/0609337.

[4]  Claude Aime,et al.  The Usefulness and Limits of Coronagraphy in the Presence of Pinned Speckles , 2004 .

[5]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[6]  N. Jeremy Kasdin,et al.  Linear and bayesian planet detection algorithms for the Terrestrial planet finder , 2006 .

[7]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[8]  J SWETS,et al.  Decision processes in perception. , 1961, Psychological review.

[9]  Rand R. Wilcox,et al.  Basic Statistics: Understanding Conventional Methods and Modern Insights , 2009 .

[10]  Kjetil Dohlen,et al.  The infra-red dual imaging and spectrograph for SPHERE: design and performance , 2008, Astronomical Telescopes + Instrumentation.

[11]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[12]  Dimitri Mawet,et al.  VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy - Orbital architecture analysis with PyAstrOFit , 2016, 1610.04014.

[13]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[14]  Michael J. Escuti,et al.  ON-SKY PERFORMANCE ANALYSIS OF THE VECTOR APODIZING PHASE PLATE CORONAGRAPH ON MagAO/Clio2 , 2017, 1702.04193.

[15]  S. Ridgway,et al.  Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs , 2006, astro-ph/0608506.

[16]  C. Marois,et al.  Confidence Level and Sensitivity Limits in High-Contrast Imaging , 2007, 0709.3548.

[17]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[18]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[19]  Michael C. Liu,et al.  Substructure in the Circumstellar Disk Around the Young Star AU Microscopii , 2004, Science.

[20]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[21]  Olivier Guyon,et al.  The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects , 2016, 1604.04697.

[22]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[23]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[24]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.

[25]  Vanessa P. Bailey,et al.  Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter , 2017, 1705.05477.

[26]  Marc Van Droogenbroeck,et al.  VIP: Vortex Image Processing Package for High-contrast Direct Imaging , 2017, 1705.06184.

[27]  Laurent Pueyo,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS USING PROJECTIONS ON KARHUNEN–LOEVE EIGENIMAGES: FORWARD MODELING , 2016, 1604.06097.

[28]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.

[29]  John E. Krist,et al.  Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances , 2015 .

[30]  Lori E. Dodd,et al.  ROC Curves for Continuous Data by KRZANOWSKI, W. J. and HAND, D. J. , 2010 .

[31]  E. Bloemhof,et al.  Anomalous intensity of pinned speckles at high adaptive correction. , 2004, Optics letters.

[32]  Xu Wang,et al.  Low-order wavefront sensing and control for WFIRST-AFTA coronagraph , 2015 .

[33]  James R. Graham,et al.  Speckle Statistics in Adaptively Corrected Images , 2006 .

[34]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE COMPANION DETECTION PIPELINE , 2013, 1310.4172.

[35]  D. Mouillet,et al.  Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data , 2015, 1508.06406.

[36]  Arthur Vigan,et al.  HIGH-CADENCE, HIGH-CONTRAST IMAGING FOR EXOPLANET MAPPING: OBSERVATIONS OF THE HR 8799 PLANETS WITH VLT/SPHERE SATELLITE-SPOT-CORRECTED RELATIVE PHOTOMETRY , 2016, 1602.02856.

[37]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[38]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[39]  Alexis Carlotti,et al.  Image analysis with speckles altered by a deformable mirror , 2013, Optics & Photonics - Optical Engineering + Applications.