Functional contour regression

In this paper, we propose functional contour regression (FCR) for dimension reduction in the functional regression context. FCR achieves dimension reduction using the empirical directions on the functional predictor in contours defined on the response variable. It is more efficient than the functional variants of the sliced inverse regression (SIR) method by exploiting inter-slice information. A modified BIC is used to determine the dimensionality of the effective dimension reduction space. We prove that FCR is consistent in estimating the functional regression parameters, and simulations show that the estimates given by our FCR method provide better prediction accuracy than other existing methods such as functional sliced inverse regression, functional inverse regression and wavelet SIR. The merit of FCR is further demonstrated by two real data examples.

[1]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[2]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[3]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[4]  Lixing Zhu,et al.  On Sliced Inverse Regression With High-Dimensional Covariates , 2006 .

[5]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[6]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[7]  Kiyosi Itô,et al.  On the convergence of sums of independent Banach space valued random variables , 1968 .

[8]  L. Ferré,et al.  Smoothed Functional Inverse Regression , 2005 .

[9]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[10]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[11]  Jane-Ling Wang,et al.  Functional quasi‐likelihood regression models with smooth random effects , 2003 .

[12]  Amparo Baíllo,et al.  Local linear regression for functional predictor and scalar response , 2009, J. Multivar. Anal..

[13]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[14]  R. G. Jáimez,et al.  On the Karhunen-Loeve expansion for transformed processes , 1987 .

[15]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[16]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .

[17]  B. Silverman,et al.  Smoothed functional principal components analysis by choice of norm , 1996 .

[18]  Anestis Antoniadis,et al.  Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..

[19]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[20]  Wolfgang Härdle,et al.  Sliced inverse regression for dimension reduction. Comments. Reply , 1991 .

[21]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[22]  L. Ferre,et al.  Un modèle semi-paramétrique pour variables aléatoires hilbertiennes , 2001 .

[23]  Joel Zinn,et al.  A Remark on Convergence in Distribution of $U$-Statistics , 1994 .

[24]  H. Zha,et al.  Contour regression: A general approach to dimension reduction , 2005, math/0508277.

[25]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.