An FPGA implementation of insect-inspired motion detector for high-speed vision systems

In this paper, an array of biologically inspired elementary motion detectors (EMDs) is implemented on an FPGA (field programmable gate array) platform. The well-known Reichardt-type EMD, modeling the insect's visual signal processing system, is very sensitive to motion direction and has low computational cost. A modified structure of EMD is used to detect local optical flow. Six templates of receptive fields, according to the fly's vision system, are designed for simple ego-motion estimation. The results of several typical experiments demonstrate local detection of optical flow and simple motion estimation under specific backgrounds. The performance of the real-time implementation is sufficient to deal with a video frame rate of 350 fps at 256 times 256 pixels resolution. The execution of the motion detection algorithm and the resulting time delay is only 0.25 mus. This hardware is suited for obstacle detection, motion estimation and UAV/MAV attitude control.

[1]  Stéphane Viollet,et al.  Bio-inspired optical flow circuits for the visual guidance of micro air vehicles , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[2]  A. Borst,et al.  Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.

[3]  Shih-Chi Liu,et al.  A neuromorphic aVLSI model of global motion processing in the fly , 2000 .

[4]  Charles M. Higgins,et al.  A biologically inspired modular VLSI system for visual measurement of self-motion , 2002 .

[5]  Kazuaki Sawada,et al.  Fast global motion estimation algorithm based on elementary motion detectors , 2002, Proceedings. International Conference on Image Processing.

[6]  Reid R. Harrison,et al.  A biologically inspired analog IC for visual collision detection , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[8]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[9]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[10]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[11]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[12]  W. Reichardt,et al.  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly , 1988, Biological Cybernetics.

[13]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[14]  Katsutoshi Sawada,et al.  Real Time Parameter Optimization for Elementary Motion Detectors , 2006, 2006 International Conference on Image Processing.

[15]  F. Aubepart,et al.  FPGA implementation of elementary motion detectors for the visual guidance of micro-air-vehicles , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[16]  A. Borst,et al.  A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .