Genetic algorithm for multi-objective experimental optimization

A new software tool making use of a genetic algorithm for multi-objective experimental optimization (GAME.opt) was developed based on a strength Pareto evolutionary algorithm. The software deals with high dimensional variable spaces and unknown interactions of design variables. This approach was evaluated by means of multi-objective test problems replacing the experimental results. A default parameter setting is proposed enabling users without expert knowledge to minimize the experimental effort (small population sizes and few generations).

[1]  Dirk Weuster-Botz,et al.  Methods and milliliter scale devices for high-throughput bioprocess design , 2005, Bioprocess and biosystems engineering.

[2]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[3]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[4]  Ezequiel Franco-Lara,et al.  Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria. , 2006, Biotechnology journal.

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[6]  P. Park,et al.  On the similarities between binary-coded GA and real-coded GA in wide search space , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  D Weuster-Botz,et al.  Experimental design for fermentation media development: statistical design or global random search? , 2000, Journal of bioscience and bioengineering.

[8]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[12]  Uday K. Chakraborty,et al.  An analysis of linear ranking and binary tournament selection in genetic algorithms , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..