Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
暂无分享,去创建一个
N. Picard | C. Zhang | M. Herold | N. Picard | F. Rovero | A. Marshall | Jean‐François Bastin | D. Routh | T. Crowther | F. Kraxner | P. Reich | B. Enquist | O. Phillips | E. Broadbent | P. Brancalion | A. A. Almeyda Zambrano | M. Schelhaas | G. Nabuurs | A. Shvidenko | T. Killeen | D. Gianelle | Y. Malhi | D. Coomes | S. Lewis | T. Feldpausch | J. Barroso | M. Bastian | F. Bongers | C. Clark | D. Harris | Emanuel H. Martin | A. Araujo-Murakami | Alexander Parada-Gutierrez | L. Poorter | J. Poulsen | D. Sheil | J. Silva-Espejo | M. Silveira | H. Steege | R. Condit | T. Baker | Yude Pan | Mait Lang | E. Cienciala | M. Köhl | R. Chazdon | S. Vieira | H. Verbeeck | J. Herbohn | D. Neill | N. Pitman | L. Arroyo | G. Aymard | O. Bánki | C. Mendoza | F. Valladares | C. Hui | G. D. Werner | G. Alberti | F. Wittmann | P. Boeckx | L. Finér | D. Kennard | T. Eyre | N. Imai | K. Kitayama | V. Avitabile | T. Zawila-Niedzwiecki | V. Johannsen | C. Antón-Fernández | V. Šebeň | K. von Gadow | B. Schmid | F. Brearley | A. Hemp | B. Sonké | P. Mundhenk | S. Wiser | K. Peay | E. Kearsley | B. DeVries | J. Oleksyn | J. Svenning | A. Paquette | D. Schepaschenko | Zhi-Xin Zhu | M. Piedade | J. Schöngart | N. Targhetta | M. Rodeghiero | P. Schall | C. Ammer | K. Stereńczak | H. Pretzsch | P. Saikia | M. L. Khan | H. Bruelheide | M. Scherer‐Lorenzen | T. Jucker | L. Frizzera | J. Fridman | D. Piotto | R. Bałazy | F. Bussotti | S. de-Miguel | M. Huber | J. Gamarra | C. Merow | D. Kenfack | E. H. Honorio Coronado | B. Marimon | R. Brienen | R. Zagt | B. Jaroszewicz | F. van der Plas | P. Niklaus | B. Westerlund | O. Bouriaud | P. Sist | Eric B. Searle | B. Hérault | H. Glick | G. Hengeveld | S. Pfautsch | H. Viana | Nadja Tchebakova | James Watson | Huicui Lu | E. Parfenova | H. S. Kim | Susanne Brandl | V. Neldner | M. Ngugi | A. Jagodziński | P. Peri | P. Álvarez-Loayza | V. Wortel | J. Meave | E. Rutishauser | P. Birnbaum | M. Svoboda | R. Cazzolla Gatti | A. Roopsind | Raquel S. Thomas | Mathieu Decuyper | Eric Marcon | N. Parthasarathy | B. H. Marimon‐Junior | T. Ibanez | R. Vásquez Martínez | C. Fletcher | R. César | A. L. de Gasper | Fernando Cornejo Valverde | K. Kartawinata | A. Poulsen | P. Umunay | S. Dayanandan | M. G. Nava-Miranda | G. Derroire | James Singh | G. Keppel | E. Tikhonova | P. Saner | L. Alves | V. Usoltsev | F. Slik | Aurélie Dourdain | M. Parren | S. Rolim | H. Korjus | Abel Monteagudo Mendoza | S. A. Mukul | T. Fayle | D. Laarmann | P. Ontikov | O. Martynenko | A. Hillers | A. F. Souza | David B. Clark | G. Colletta | V. Karminov | M. Zhou | P. B. Reich | Christian Salas‐Eljatib | M. Abegg | B. S. Steidinger | T. W. Crowther | J. Liang | M. E. Nuland | G. D. A. Werner | G. Nabuurs | S. de-Miguel | M. Zhou | B. Herault | X. Zhao | D. Routh | K. G. Peay | GFBI consortium | L. Birigazzi | J. Cumming | I. C. Zo-Bi | A. Hector | A. B. Fandohan | Hyunkook Cho | Chelsea Chisholm | Minjee Park | N. Obiang | C. Y. Adou Yao | B. Steidinger | R. Nevenić | N. Picard | Hua‐Feng Wang | V. Moreno | Tran Van Do | Goran Češljar | P. Crim | Esteban Alvarez-Davila | Freddy Ramirez Arevalo | I. Djordjevic | C. A. Joly | Omar Melo-Cruz | R. Bitariho | J. Serra-Diaz | J. Corral-Rivas | Z. Zhu | Han Y. H. Chen | Brian Salvin Maitner | M. Fischer | S. Kepfer-Rojas | I. Polo | Edgar Ortiz-Malavasi | J. Liang | X. Zhao | C. Zhang | M. E. Van Nuland | N. Lukina | Ilbin Jung | Meinrad C. Yves Giorgio Angelica Esteban Patricia Luciana Abegg Adou Yao Alberti Almeyda Zambrano A | Amaral Iêda | Zorayda Restrepo-Correa | S. Kepfer‐Rojas | M. Zhou
[1] Sandra Carberry,et al. The Past, the Present, and the Future , 2016, UMAP.
[2] José Luis Hernández-Stefanoni,et al. Legume abundance along successional and rainfall gradients in Neotropical forests , 2018, Nature Ecology & Evolution.
[3] S. Vicca,et al. Mycorrhizal association as a primary control of the CO2 fertilization effect , 2016, Science.
[4] J. Liski,et al. Litter decomposition affected by climate and litter quality—Testing the Yasso model with litterbag data from the Canadian intersite decomposition experiment , 2005 .
[5] Eduard Szöcs,et al. taxize: taxonomic search and retrieval in R , 2013, F1000Research.
[6] Meelis Pärtel,et al. Global database of plants with root‐symbiotic nitrogen fixation: NodDB , 2018 .
[7] A. Staver,et al. Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes. , 2016, Ecology.
[8] Richard P Phillips,et al. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. , 2013, The New phytologist.
[9] J. Cornelissen,et al. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism , 2015, Proceedings of the National Academy of Sciences.
[10] Nicole A. Hynson,et al. New evidence of ectomycorrhizal fungi in the Hawaiian Islands associated with the endemic host Pisonia sandwicensis (Nyctaginaceae) , 2014 .
[11] C. Bettigole,et al. Mapping tree density at a global scale , 2015, Nature.
[12] J. Bever,et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. , 2017, The New phytologist.
[13] Dali Guo,et al. Evolutionary history resolves global organization of root functional traits , 2018, Nature.
[14] J. H. Burns,et al. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera. , 2017, Ecology.
[15] D. Menge,et al. Global climate change will increase the abundance of symbiotic nitrogen‐fixing trees in much of North America , 2017, Global change biology.
[16] Jefferson S. Hall,et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession , 2013, Nature.
[17] D. Hibbett,et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors , 2015, The New phytologist.
[18] Jens Kattge,et al. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms , 2014, Nature Communications.
[19] L. Hedin,et al. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling , 2019, Nature Ecology & Evolution.
[20] K. Peay. The Mutualistic Niche: Mycorrhizal Symbiosis and Community Dynamics , 2016 .
[21] B. Wang,et al. Phylogenetic distribution and evolution of mycorrhizas in land plants , 2006, Mycorrhiza.
[22] D. Binkley,et al. Biogeochemistry of adjacent conifer and alder-conifer stands , 1992 .
[23] C. Field,et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere , 2008, Nature.
[24] D. Soltis,et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[25] Eduard Szöcs,et al. taxize: taxonomic search and retrieval in R , 2013, F1000Research.
[26] P. Reich,et al. Global patterns of plant leaf N and P in relation to temperature and latitude. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[27] P. Reich,et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species , 2015 .
[28] Mark C. Brundrett. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis , 2009, Plant and Soil.
[29] D. Menge,et al. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. , 2014, Ecology.
[30] Filippo Bussotti,et al. Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.
[31] Damian P. Donnelly,et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning , 2004 .
[32] M. V. D. van der Heijden,et al. Mycorrhizal ecology and evolution : the past , the present , and the future , 2015 .
[33] O. Ovaskainen,et al. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest , 2013, Science.
[34] D. Read,et al. Mycorrhizas in ecosystems , 1991, Experientia.
[35] Steffen Fritz,et al. A dataset of forest biomass structure for Eurasia , 2017, Scientific Data.
[36] Benjamin L Turner,et al. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage , 2014, Nature.
[37] J. Liski,et al. Leaf litter decomposition-Estimates of global variability based on Yasso07 model , 2009, 0906.0886.
[38] Alexander R. Barron,et al. The Nitrogen Paradox in Tropical Forest Ecosystems , 2009 .
[39] S. Carpenter,et al. Catastrophic shifts in ecosystems , 2001, Nature.
[40] L. Tedersoo,et al. Evolutionary history of mycorrhizal symbioses and global host plant diversity. , 2018, The New phytologist.
[41] J. A. Bennett,et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics , 2017, Science.
[42] Jeffrey S. Evans. Random Forests Model Selection and Performance Evaluation , 2015 .
[43] C. Hawkes,et al. Ectomycorrhizal fungi slow soil carbon cycling. , 2016, Ecology letters.
[44] H. Lambers,et al. Plant adaptations to severely phosphorus-impoverished soils. , 2015, Current opinion in plant biology.
[45] J. R. King,et al. Climate fails to predict wood decomposition at regional scales , 2014 .
[46] T. Daufresne,et al. SCALING OF C:N:P STOICHIOMETRY IN FORESTS WORLDWIDE: IMPLICATIONS OF TERRESTRIAL REDFIELD‐TYPE RATIOS , 2004 .
[47] Benjamin L Turner,et al. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. , 2016, Ecology letters.