Truncated incremental search

Incremental heuristic search algorithms reuse their previous search efforts whenever these are available. As a result, they can often solve a sequence of similar planning problems faster than planning from scratch. State-of-the-art incremental heuristic searches (such as LPA*, D* and D* Lite) work by propagating cost changes to all the states in the search tree whose g values (the costs of computed paths from the start state) are no longer optimal. This work is based on the observation that while a complete propagation of cost changes is essential to ensure optimality, the propagations can be stopped earlier if we are looking close-to-optimal solutions instead of the optimal one. We develop a framework called Truncated Incremental Search that builds on this observation and uses a target suboptimality bound to efficiently restrict cost propagations. We present two truncation based algorithms, Truncated LPA* (TLPA*) and Truncated D* Lite (TD* Lite), for bounded suboptimal planning and navigation in dynamic graphs. We also develop an anytime replanning algorithm, Anytime Truncated D* (ATD*), that combines the inflated heuristic search with truncation, in an anytime manner. We discuss the theoretical properties of these algorithms proving their correctness and efficiency, and present experimental results on 2D and 3D (x, y, heading) path planning domains evaluating their performance. The empirical results show that the truncated incremental searches can provide significant improvement in runtime over existing incremental search algorithms, especially when searching for close-to-optimal solutions in large, dynamic graphs.

[1]  Pedro Meseguer,et al.  Path-Adaptive A* for Incremental Heuristic Search in Unknown Terrain , 2009, ICAPS.

[2]  Sven Koenig,et al.  A Generalized Framework for Lifelong Planning A* Search , 2005, ICAPS.

[3]  Sven Koenig,et al.  Generalized Adaptive A* , 2008, AAMAS.

[4]  Pallab Dasgupta,et al.  Instruction-set-extension exploration using decomposable heuristic search , 2006, 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06).

[5]  Malte Helmert,et al.  Better Parameter-Free Anytime Search by Minimizing Time Between Solutions , 2012, SOCS.

[6]  Satya Gautam Vadlamudi,et al.  Anytime pack search , 2015, Natural Computing.

[7]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[8]  Maxim Likhachev,et al.  Path planning for non-circular micro aerial vehicles in constrained environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[9]  Susmita Sur-Kolay,et al.  VLSI floorplan generation and area optimization using AND-OR graph search , 1995, Proceedings of the 8th International Conference on VLSI Design.

[10]  Jorge A. Baier,et al.  Reusing Previously Found A* Paths for Fast Goal-Directed Navigation in Dynamic Terrain , 2015, AAAI.

[11]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[12]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[13]  David Furcy ITSA * : Iterative Tunneling Search with A * , 2006 .

[14]  Wheeler Ruml,et al.  When Does Weighted A* Fail? , 2012, SOCS.

[15]  Maxim Likhachev,et al.  Incremental Planning with Adaptive Dimensionality , 2013, ICAPS.

[16]  Eric A. Hansen,et al.  Multiple sequence alignment using anytime A* , 2002, AAAI/IAAI.

[17]  Wheeler Ruml,et al.  The Joy of Forgetting: Faster Anytime Search via Restarting , 2010, ICAPS.

[18]  Christopher G. Atkeson,et al.  Optimization and learning for rough terrain legged locomotion , 2011, Int. J. Robotics Res..

[19]  Changhe Yuan,et al.  Learning Optimal Bayesian Networks: A Shortest Path Perspective , 2013, J. Artif. Intell. Res..

[20]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[21]  Thomas W. Reps,et al.  An Incremental Algorithm for a Generalization of the Shortest-Path Problem , 1996, J. Algorithms.

[22]  P. P. Chakrabarti,et al.  AWA* - A Window Constrained Anytime Heuristic Search Algorithm , 2007, IJCAI.

[23]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[24]  Wolfgang Bibel,et al.  Solving Constraint Optimization Problems from CLP-Style Specifications Using Heuristic Search Techniques , 2002, IEEE Trans. Knowl. Data Eng..

[25]  Faruk Polat,et al.  RTTES: Real-time search in dynamic environments , 2007, Applied Intelligence.

[26]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[27]  Satya Gautam Vadlamudi,et al.  Anytime Column Search , 2012, Australasian Conference on Artificial Intelligence.

[28]  Weixiong Zhang,et al.  Complete Anytime Beam Search , 1998, AAAI/IAAI.

[29]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[30]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[31]  Ivan Serina,et al.  Fast Plan Adaptation through Planning Graphs: Local and Systematic Search Techniques , 2000, AIPS.

[32]  Pedro Meseguer,et al.  Tree Adaptive A , 2011, AAMAS.

[33]  S. Raghavan,et al.  Heuristic Search for the Generalized Minimum Spanning Tree Problem , 2005, INFORMS J. Comput..

[34]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[35]  Changhe Yuan,et al.  Finding Optimal Bayesian Network Structures with Constraints Learned from Data , 2014, UAI.

[36]  Maxim Likhachev,et al.  Anytime Truncated D* : Anytime Replanning with Truncation , 2013, SOCS.

[37]  Leo Dorst,et al.  Differential A* , 2002, IEEE Trans. Knowl. Data Eng..

[38]  Sven Koenig,et al.  Real-time adaptive A* , 2006, AAMAS '06.

[39]  Ivan Serina,et al.  Plan Stability: Replanning versus Plan Repair , 2006, ICAPS.

[40]  Claude Sammut Beam Search , 2017, Encyclopedia of Machine Learning and Data Mining.

[41]  Edward Keedwell,et al.  Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems , 2005 .

[42]  Maxim Likhachev,et al.  D*lite , 2002, AAAI/IAAI.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[45]  Sven Koenig,et al.  Moving target D* Lite , 2010, AAMAS.

[46]  Sven Koenig,et al.  Adaptive A , 2005, AAMAS '05.

[47]  Satya Gautam Vadlamudi,et al.  $\hbox{MAWA}^{\ast}$—A Memory-Bounded Anytime Heuristic-Search Algorithm , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[48]  Vipin Kumar Branch-And-Bound Search , 1985 .

[49]  Sven Koenig,et al.  Incremental ARA*: An Incremental Anytime Search Algorithm for Moving-Target Search , 2012, ICAPS.

[50]  Sven Koenig,et al.  Generalized Fringe-Retrieving A*: faster moving target search on state lattices , 2010, AAMAS.

[51]  Daniel D. Lee,et al.  The University of Pennsylvania MAGIC 2010 multi‐robot unmanned vehicle system , 2012, J. Field Robotics.

[52]  Rami Puzis,et al.  Potential-based bounded-cost search and Anytime Non-Parametric A* , 2014, Artif. Intell..

[53]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[54]  Jorge A. Baier,et al.  Position Paper: Incremental Search Algorithms Considered Poorly Understood , 2012, SOCS.

[55]  Maxim Likhachev,et al.  Truncated Incremental Search: Faster Replanning by Exploiting Suboptimality , 2013, AAAI.

[56]  Wheeler Ruml,et al.  Real-Time Search in Dynamic Worlds , 2010, SOCS.

[57]  Sven Koenig,et al.  The Fringe-Saving A* Search Algorithm - A Feasibility Study , 2007, IJCAI.

[58]  Anthony Stentz,et al.  Using interpolation to improve path planning: The Field D* algorithm , 2006, J. Field Robotics.

[59]  Qishi Du,et al.  Heuristic lipophilicity potential for computer-aided rational drug design , 1997, J. Comput. Aided Mol. Des..

[60]  Maxim Likhachev,et al.  Anytime Tree-Restoring Weighted A* Graph Search , 2014, SOCS.

[61]  Maxim Likhachev,et al.  Search-based planning for manipulation with motion primitives , 2010, 2010 IEEE International Conference on Robotics and Automation.

[62]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[63]  Maxim Likhachev,et al.  Multi-Heuristic A* , 2014, Int. J. Robotics Res..

[64]  Bruce L. Golden,et al.  Heuristic Search for Network Design , 2005 .

[65]  Shlomo Zilberstein,et al.  Anytime Heuristic Search: First Results , 1997 .

[66]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[67]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[68]  A. Bagchi,et al.  Three approaches to heuristic search in networks , 1985, JACM.

[69]  Eric A. Hansen,et al.  Beam-Stack Search: Integrating Backtracking with Beam Search , 2005, ICAPS.

[70]  Judea Pearl,et al.  Studies in Semi-Admissible Heuristics , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Maren Bennewitz,et al.  Anytime search-based footstep planning with suboptimality bounds , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[72]  David Furcy,et al.  Limited Discrepancy Beam Search , 2005, IJCAI.