Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems

Artificial spin-ice promises a means of probing dynamics in frustrated systems, but samples typically only shift between low-lying energy states under an external field. Exploring the energy landscape is now possible, through exquisite control over the thermal fluctuations of mesoscopic magnetic dipoles.

[1]  P. Wolynes,et al.  On the role of frustration in the energy landscapes of allosteric proteins , 2011, Proceedings of the National Academy of Sciences.

[2]  M. Bode,et al.  Magnetization reversal of nanoscale islands: how size and shape affect the arrhenius prefactor. , 2009, Physical review letters.

[3]  V. Crespi,et al.  Energy minimization and ac demagnetization in a nanomagnet array. , 2008, Physical review letters.

[4]  Dominique Mailly,et al.  Experimental evidence of the Neel-Brown model of magnetization reversal , 1997 .

[5]  Andrea Taroni,et al.  Melting artificial spin ice , 2012 .

[6]  Aaron Stein,et al.  Thermal ground-state ordering and elementary excitations in artificial magnetic square ice , 2011 .

[7]  J. Cumings,et al.  Reducing disorder in artificial kagome ice. , 2011, Physical review letters.

[8]  R. Cava,et al.  How ‘spin ice’ freezes , 2001, Nature.

[9]  Zoe Budrikis,et al.  Diversity enabling equilibration: disorder and the ground state in artificial spin ice. , 2011, Physical review letters.

[10]  G. R. Harp,et al.  Element-Specific Magnetic Microscopy with Circularly Polarized X-rays , 1993, Science.

[11]  L. Heyderman,et al.  Building blocks of an artificial kagome spin ice : Photoemission electron microscopy of arrays of ferromagnetic islands , 2008 .

[12]  L. F. Cohen,et al.  Direct observation of magnetic monopole defects in an artificial spin-ice system , 2010 .

[13]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[14]  Braun,et al.  Thermally activated magnetization reversal in elongated ferromagnetic particles. , 1993 .

[15]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[16]  V. Crespi,et al.  Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands , 2006, Nature.

[17]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[18]  R. Chopdekar,et al.  Thermalized ground state of artificial kagome spin ice building blocks , 2012 .

[19]  R. Moessner,et al.  Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays , 2009, 0906.3937.

[20]  P. Manuel,et al.  Pinch points and Kasteleyn transitions in kagome ice , 2007 .

[21]  J. Cumings,et al.  Direct observation of the ice rule in an artificial kagome spin ice , 2008, 0802.0034.

[22]  E. Ressouche,et al.  Kagomé ice state in the dipolar spin ice Dy2Ti2O7. , 2006, Physical review letters.

[23]  S. Bramwell,et al.  GEOMETRICAL FRUSTRATION IN THE FERROMAGNETIC PYROCHLORE HO2TI2O7 , 1997 .

[24]  Laura J. Heyderman,et al.  Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice , 2011 .

[25]  R. Moessner,et al.  Magnetic monopoles in spin ice , 2007, Nature.

[26]  Gia-Wei Chern,et al.  Two-stage ordering of spins in dipolar spin ice on the kagome lattice. , 2009, Physical review letters.

[27]  E. Schlömann,et al.  Demagnetizing Field in Nonellipsoidal Bodies , 1965 .

[28]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[29]  R. Wiebe,et al.  THE ENTROPY OF HYDROGEN CHLORIDE. HEAT CAPACITY FROM 16°K. TO BOILING POINT. HEAT OF VAPORIZATION. VAPOR PRESSURES OF SOLID AND LIQUID , 1928 .

[30]  R. Siddharthan,et al.  Zero-point entropy in ‘spin ice’ , 1999, Nature.

[31]  S. Moussaoui,et al.  Studying nanomagnets and magnetic heterostructures with X-ray PEEM at the Swiss Light Source , 2012 .