Fluid mechanics of pulse detonation thrusters

Abstract The advantages of constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency have focused the researches of advanced propulsion on detonation engines. The paper gives coverage of efforts undertaken during past decades in adjusting detonations for propulsion applications, and highlights new challenges in studying fluid flow dynamics relevant to onset of detonation.

[1]  V. F. Nikitin,et al.  Pulse detonation engines: Technical approaches , 2009 .

[2]  Andrzej Teodorczyk,et al.  Flame acceleration and transition to detonation in benzene–air mixtures , 1998 .

[3]  A. K. Oppenheim,et al.  Experimental observations of the transition to detonation in an explosive gas , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  K. I. Shchelkin,et al.  Gasdynamics of combustion , 1965 .

[5]  N. Smirnov,et al.  DEFLAGRATION TO DETONATION TRANSITION IN COMBUSTIBLE GAS MIXTURES , 1995 .

[6]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[7]  Elaine S. Oran,et al.  Numerical simulation of detonation initiation in a flame brush : The role of hot spots , 1999 .

[8]  Gabriel D. Roy,et al.  High-Speed Deflagration and Detonation: Fundamentals and Control. International Colloquium on Control and Detonation Processes Held in Moscow, Russia on July 4-7, 2000 , 2001 .

[9]  Nickolay Smirnov,et al.  A study of deflagration and detonation in multiphase hydrocarbon-air mixtures , 1994 .

[10]  Nickolay Smirnov,et al.  Experimental investigation of deflagration to detonation transition in hydrocarbon-air gaseous mixtures , 1995 .

[11]  J. Sinibaldi,et al.  Chapter 3 – INITIATOR DIFFRACTION LIMITS IN A PULSE DETONATION ENGINE , 2005 .

[12]  Nickolay Smirnov,et al.  Unsteady-state turbulent diffusive combustion in confined volumes , 1997 .

[13]  V. F. Nikitin,et al.  The influence of confinement geometry on deflagration to detonation transition in gases , 2002 .

[14]  Shmuel Eidelman,et al.  Pulsed detonation engine experimental and theoretical review , 1992 .

[15]  R. I. Soloukhin,et al.  Experiments in Gasdynamics of Explosions , 1973 .

[16]  O. Pironneau,et al.  Analysis of the K-epsilon turbulence model , 1994 .

[17]  Nickolay Smirnov,et al.  Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition , 2009 .

[18]  R. B. Morrison,et al.  Intermittent Detonation as a Thrust-Producing Mechanism , 1957 .

[19]  S. A. Zhdan,et al.  Continuous detonation in the regime of self-oscillatory ejection of the oxidizer. 2. Air as an oxidizer , 2011 .

[20]  Nickolay Smirnov,et al.  Deflagration-to-detonation transition in gases in tubes with cavities , 2010 .

[21]  M. Fong,et al.  Experimental Measurements and Theoretical Analysis of Detonation Induction Distances , 1961 .

[22]  M. F. Ivanov,et al.  Deflagration-to-Detonation Transition in Highly Reactive Combustible Mixtures , 2010 .

[23]  Elaine S. Oran,et al.  Ignition of flamelets behind incident shock waves and the transition to detonation. Memorandum report , 1983 .

[24]  Nickolay Smirnov,et al.  Control of detonation onset in combustible gases , 2001 .

[25]  A. Merzhanov,et al.  On critical conditions for thermal explosion of a hot spot , 1966 .

[26]  H. J. Michels,et al.  Deflagration to detonation transition in mixtures of alkane LNG/LPG constituents with O2N2 , 1988 .

[27]  D. Chapman,et al.  VI. On the rate of explosion in gases , 1899 .

[28]  A. A. Borisov On the origin of exothermic centers in gaseous mixtures , 1974 .

[29]  L. N. Khitrin Физика горения и взрыва , 1957 .

[30]  G. Thomas,et al.  Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures , 1999 .

[31]  N. Smirnov Pulse Detonation Engines: Advantages and Limitations , 2007 .