Atomic structure and strain of the InAs wetting layer growing on GaAs(001)-c(4×4)

Using scanning tunneling microscopy, the authors studied the wetting layer evolution of InAs on GaAs(001)-c(4×4) and unraveled the different surface reconstructions during this process. At low coverages the deposited InAs material is first stored at defects and then at the hollow sites of the GaAs(001)-c(4×4) reconstruction. Close to an InAs coverage of 2/3 monolayer (ML), the whole surface abruptly reconstructs into an In2/3Ga1/3As monolayer, showing mainly a (4×3) reconstruction. Further deposited InAs is arranged in three different InAs(001)-(2×4) reconstructions on top of the In2/3Ga1/3As layer. After quantum dot occurrence above about 1.4 ML of InAs, a material transport away from the wetting layer is observed by a partial reappearance of the underlying (4×3) reconstruction. A detailed analysis of the observed reconstructions clearly shows that their specific atomic arrangements lead to a reduction of strain, while increased amounts of strain at the wetting layer start to build up above about 1.4 ML ...

[1]  H. Eisele,et al.  Atomic structure of the (4 × 3) reconstructed InGaAs monolayer on GaAs(0 0 1) , 2010 .

[2]  H. Eisele,et al.  Evolution of the InAs wetting layer on GaAs(001)-c(4×4) on the atomic scale , 2009 .

[3]  Friedhelm Hopfer,et al.  32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL , 2009 .

[4]  H. Eisele,et al.  Change of InAs/GaAs quantum dot shape and composition during capping , 2008 .

[5]  Jeng-Jung Shen,et al.  Self-ordered InGaAs quantum dots grown at low growth rates , 2008 .

[6]  H. Eisele,et al.  Erratum: “Atomically resolved structure of InAs quantum dots” [Appl. Phys. Lett. 78, 2309 (2001)] , 2007 .

[7]  A. R. Kovsh,et al.  Novel concepts for ultrahigh-speed quantum-dot VCSELs and edge-emitters , 2007, SPIE OPTO.

[8]  D. Bimberg,et al.  20 Gb/s 85$^{\circ}$C Error-Free Operation of VCSELs Based on Submonolayer Deposition of Quantum Dots , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  S. Tsukamoto,et al.  Heteroepitaxial growth of InAs on GaAs(001) by in situ STM located inside MBE growth chamber , 2006, Microelectron. J..

[10]  Y. Arakawa,et al.  In Situ Scanning Tunneling Microscope Observation of InAs Wetting Layer Formation on GaAs(001) during Molecular Beam Epitaxy Growth at 500 °C , 2006 .

[11]  K. Jacobi,et al.  Shape transition of InAs quantum dots on GaAs(001) , 2005 .

[12]  K. Jacobi,et al.  On the location of InAs quantum dots on GaAs(001) , 2005 .

[13]  K. Jacobi,et al.  InAs wetting layer evolution on GaAs(001) , 2005 .

[14]  M. Scheffler,et al.  Atomic structure of the GaAs(001)-c(4x4) surface: first-principles evidence for diversity of heterodimer motifs. , 2004, Physical review letters.

[15]  J. Nakamura,et al.  Kinetics in surface reconstructions on GaAs(001). , 2004, Physical review letters.

[16]  J. Millunchick,et al.  Surface reconstructions of InGaAs alloys , 2004 .

[17]  J. Millunchick,et al.  Surface reconstructions of In-enriched InGaAs alloys , 2003 .

[18]  T. Jones,et al.  Strain-engineered InAs'GaAs quantum dots for long-wavelength emission , 2003 .

[19]  H. Eisele,et al.  Atomic structure of InAs and InGaAs quantum dots determined by cross-sectional scanning tunneling microscopy , 2003 .

[20]  T. Jones,et al.  Role of two- and three-dimensional surface structures in InAs-GaAs(001) quantum dot nucleation , 2002 .

[21]  R. S. Ross,et al.  Atomic scale structure of InAs(001)-(2×4) steady-state surfaces determined by scanning tunneling microscopy and density functional theory , 2002 .

[22]  S. Hasegawa,et al.  Scanning tunneling microscopy study of InAs islanding on GaAs(001) , 2001 .

[23]  K. Jacobi,et al.  Atomically resolved structure of InAs quantum dots , 2001 .

[24]  M. Scheffler,et al.  Effect of strain on surface diffusion in semiconductor heteroepitaxy , 2001, cond-mat/0105397.

[25]  G. P. Srivastava,et al.  Structure and electronic states of InAs(001)-(2×4) surfaces , 2000 .

[26]  O. Shchekin,et al.  Discrete energy level separation and the threshold temperature dependence of quantum dot lasers , 2000 .

[27]  J. P. Silveira,et al.  Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001) , 2000 .

[28]  K. Jacobi,et al.  A compact ultrahigh-vacuum system for the in situ investigation of III/V semiconductor surfaces , 2000 .

[29]  D. Vvedensky,et al.  Nucleation and growth mechanisms during MBE of III–V compounds , 1999 .

[30]  H. Eisele,et al.  Atomic structure of stacked InAs quantum dots grown by metal-organic chemical vapor deposition , 1999 .

[31]  H. Eisele,et al.  Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots , 1999 .

[32]  A. Kalburge,et al.  Observation of Reentrant 2D to 3D Morphology Transition in Highly Strained Epitaxy: InAs on GaAs , 1997 .

[33]  J. Sudijono,et al.  Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4) , 1996 .

[34]  Garreau,et al.  Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: x-ray diffraction evidence for a composition lock-in. , 1995, Physical review letters.

[35]  Leonard,et al.  Critical layer thickness for self-assembled InAs islands on GaAs. , 1994, Physical review. B, Condensed matter.

[36]  J. M. Moison,et al.  Self‐organized growth of regular nanometer‐scale InAs dots on GaAs , 1994 .

[37]  Ryoichi Ito,et al.  Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells , 1992 .

[38]  Northrup,et al.  Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy. , 1990, Physical review. B, Condensed matter.

[39]  Robinson,et al.  Fractional stoichiometry of the GaAs(001)c(4 x 4) surface: An in-situ x-ray scattering study. , 1989, Physical review letters.

[40]  J. Moison,et al.  Intermixing at InAs/GaAs and GaAs/InAs interfaces , 1987 .

[41]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .