Limit Cycles in Nonlinear Systems with Fractional Order Plants

In recent years, there has been considerable interest in the study of feedback systems containing processes whose dynamics are best described by fractional order derivatives. Various situations have been cited for describing heat flow and aspects of bioengineering, where such models are believed to be superior. In many situations these feedback systems are not linear and information on their stability and the possibility of the existence of limit cycles is required. This paper presents new results for determining limit cycles using the approximate describing function method and an exact method when the nonlinearity is a relay characteristic.

[1]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[2]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[3]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[4]  Duarte Valério,et al.  Time-domain implementation of fractional order controllers , 2005 .

[5]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[6]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[7]  Y. Chen,et al.  A comparative introduction of four fractional order controllers , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[8]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[9]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[10]  Derek P. Atherton,et al.  Stability of nonlinear systems , 1981 .

[11]  Anthony N. Michel,et al.  Stability of viscoelastic control systems , 1987 .

[12]  Eduard Petlenkov,et al.  FOMCON: Fractional-order modeling and control toolbox for MATLAB , 2011, Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011.

[13]  A L Goldberger,et al.  On a mechanism of cardiac electrical stability. The fractal hypothesis. , 1985, Biophysical journal.

[14]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[15]  S. Westerlund,et al.  Capacitor theory , 1994 .

[16]  Derek P. Atherton Early developments in nonlinear control , 1996 .

[17]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[18]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[19]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[20]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[21]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[22]  Y. Chen,et al.  A class of fractional dynamic systems with fuzzy order , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[23]  Alina Voda,et al.  Numerical simulation and identification of fractional systems using Digital Adjustable Fractional order integrator , 2013, 2013 European Control Conference (ECC).

[24]  Nusret Tan,et al.  Robust stability analysis of fractional order interval polynomials. , 2009, ISA transactions.

[25]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[26]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[27]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[28]  D. P. Atherton,et al.  Nonlinear Control Engineering-Describing Function Analysis and Design , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[30]  I. Podlubny Fractional differential equations , 1998 .

[31]  C. Yeroglu,et al.  Design of PI and PID Controllers for Fractional Order Time Delay Systems , 2010 .

[32]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[33]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[34]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[35]  Umberto Viaro,et al.  A method for the integer-order approximation of fractional-order systems , 2014, J. Frankl. Inst..

[36]  Duarte Valério,et al.  NINTEGER: A NON-INTEGER CONTROL TOOLBOX FOR MATLAB , 2004 .

[37]  Alain Oustaloup,et al.  Robust Speed Control of a Low Damped Electromechanical System Based on CRONE Control: Application to a Four Mass Experimental Test Bench , 2004 .

[38]  W. Glöckle,et al.  A fractional model for mechanical stress relaxation , 1991 .

[39]  D. Atherton An Introduction to Nonlinearity in Control Systems , 2011 .

[40]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[41]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[42]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .