A Sharp Condition for Exact Support Recovery With Orthogonal Matching Pursuit

Support recovery of sparse signals from noisy measurements with orthogonal matching pursuit (OMP) has been extensively studied. In this paper, we show that for any <inline-formula><tex-math notation="LaTeX">$K$</tex-math> </inline-formula>-sparse signal <inline-formula><tex-math notation="LaTeX">${\boldsymbol{x}}$</tex-math> </inline-formula>, if a sensing matrix <inline-formula><tex-math notation="LaTeX">$\boldsymbol{A}$</tex-math> </inline-formula> satisfies the restricted isometry property (RIP) with restricted isometry constant <inline-formula> <tex-math notation="LaTeX">$\delta _{K+1} < 1/\sqrt{K+1}$</tex-math></inline-formula>, then under some constraints on the minimum magnitude of nonzero elements of <inline-formula><tex-math notation="LaTeX">${\boldsymbol{x}}$ </tex-math></inline-formula>, OMP exactly recovers the support of <inline-formula><tex-math notation="LaTeX"> ${\boldsymbol{x}}$</tex-math></inline-formula> from its measurements <inline-formula><tex-math notation="LaTeX"> ${\boldsymbol{y}}=\boldsymbol{A}{\boldsymbol{x}}+\boldsymbol{v}$</tex-math></inline-formula> in <inline-formula> <tex-math notation="LaTeX">$K$</tex-math></inline-formula> iterations, where <inline-formula><tex-math notation="LaTeX"> $\boldsymbol{v}$</tex-math></inline-formula> is a noise vector that is <inline-formula><tex-math notation="LaTeX">$\ell _2$</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">$\ell _{\infty }$</tex-math> </inline-formula> bounded. This sufficient condition is sharp in terms of <inline-formula><tex-math notation="LaTeX"> $\delta _{K+1}$</tex-math></inline-formula> since for any given positive integer <inline-formula> <tex-math notation="LaTeX">$K$</tex-math></inline-formula> and any <inline-formula><tex-math notation="LaTeX"> $1/\sqrt{K+1}\leq \delta <1$</tex-math></inline-formula>, there always exists a matrix <inline-formula> <tex-math notation="LaTeX">$\boldsymbol{A}$</tex-math></inline-formula> satisfying the RIP with <inline-formula> <tex-math notation="LaTeX">$\delta _{K+1}=\delta$</tex-math></inline-formula> for which OMP fails to recover a <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula>-sparse signal <inline-formula> <tex-math notation="LaTeX">${\boldsymbol{x}}$</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX"> $K$</tex-math></inline-formula> iterations. Also, our constraints on the minimum magnitude of nonzero elements of <inline-formula><tex-math notation="LaTeX">${\boldsymbol{x}}$</tex-math></inline-formula> are weaker than existing ones. Moreover, we propose worst case necessary conditions for the exact support recovery of <inline-formula> <tex-math notation="LaTeX">${\boldsymbol{x}}$</tex-math></inline-formula>, characterized by the minimum magnitude of the nonzero elements of <inline-formula><tex-math notation="LaTeX">${\boldsymbol{x}}$</tex-math></inline-formula>.

[1]  R. Gribonval,et al.  Exact Recovery Conditions for Sparse Representations With Partial Support Information , 2013, IEEE Transactions on Information Theory.

[2]  Entao Liu,et al.  Orthogonal Super Greedy Algorithm and Applications in Compressed Sensing ∗ , 2010 .

[3]  Song Li,et al.  Sparse Signals Recovery from Noisy Measurements by Orthogonal Matching Pursuit , 2011, 1105.6177.

[4]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[5]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[6]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[7]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[8]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[9]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[10]  Jian Wang,et al.  On the Recovery Limit of Sparse Signals Using Orthogonal Matching Pursuit , 2012, IEEE Transactions on Signal Processing.

[11]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[12]  Jinming Wen,et al.  Stable Recovery of Sparse Signals via $l_p-$Minimization , 2014, ArXiv.

[13]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[14]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[15]  Ling-Hua Chang,et al.  An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit , 2014, IEEE Transactions on Information Theory.

[16]  Qun Mo,et al.  A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit , 2015, ArXiv.

[17]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[18]  Jinming Wen,et al.  Improved Bounds on the Restricted Isometry Constant for Orthogonal Matching Pursuit , 2013, ArXiv.

[19]  Yi Shen,et al.  Analysis of generalised orthogonal matching pursuit using restricted isometry constant , 2014 .

[20]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[21]  Lie Wang,et al.  Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise , 2011, IEEE Transactions on Information Theory.

[22]  Jian Wang Support Recovery With Orthogonal Matching Pursuit in the Presence of Noise , 2015, IEEE Transactions on Signal Processing.

[23]  Wei Huang,et al.  The Exact Support Recovery of Sparse Signals With Noise via Orthogonal Matching Pursuit , 2013, IEEE Signal Processing Letters.

[24]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[25]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[26]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[27]  Yi Shen,et al.  A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[28]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[29]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[30]  Jian Wang,et al.  A sharp condition for exact support recovery of sparse signals with orthogonal matching pursuit , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).