Combustion synthesis/densification of an Al2O3–TiB2 composite

[1]  E. Olevsky,et al.  Instability of sintering of porous bodies , 2000 .

[2]  M. Meyers,et al.  Densification of Reaction‐Synthesized Titanium Carbide by High‐Velocity Forging , 1992 .

[3]  R. Williamson,et al.  Fabrication of titanium carbide-alumina composites by combustion synthesis and subsequent dynamic consolidation , 1990 .

[4]  T. Wada,et al.  High‐Pressure Self‐Combustion Sintering of Alumina‐Titanium Carbide Ceramic Composite , 1990 .

[5]  H. Yi,et al.  Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials , 1990 .

[6]  J. B. Holt,et al.  Combustion and plasma synthesis of high-temperature materials , 1990 .

[7]  O. Odawara,et al.  Combustion Synthesis of the Titanium-Aluminum-Boron System , 1989 .

[8]  L. Kecskes,et al.  Impurities in the Combustion Synthesis of Titanium Carbide , 1989 .

[9]  Z. A. Munir,et al.  Synthesis of high temperature materials by self-propagating combustion methods , 1988 .

[10]  W. Williams,et al.  High temperature deformation of titanium diboride , 1987 .

[11]  J. B. Holt,et al.  Combustion synthesis of titanium carbide: Theory and experiment , 1986 .

[12]  S. M. Doraivelu,et al.  A new yield function for compressible PM materials , 1984 .

[13]  R. L. Ashbrook Directionally Solidified Ceramic Eutectics , 1977 .

[14]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[15]  A. Merzhanov The theory of stable homogeneous combustion of condensed substances , 1969 .

[16]  D. J. Johns,et al.  Thermal stress analysis , 1965 .