The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits

Abstract : A generalized Sundman transformation dt = crnds for exponent n 1 may be used to accelerate the numerical computation of high-eccentricity orbits, by transforming time t to a new independent variable s. Once transformed, the integration in uniform steps of s effectively gives analytic step variation in t with larger time steps at apogee than at perigee, making errors at each point roughly comparable. In this paper, we develop techniques for assessing accuracy of s-integration in the presence of perturbations, and analyze the effectiveness of regularizing the transformed equations. A computational speed comparison is provided.

[1]  M. L. Sein-Echaluce,et al.  On the Szebehely-bond equation generalized Sundman's transformation for the perturbed two-body problem , 1984 .

[2]  Phil Palmer,et al.  HIGH PRECISION INTEGRATION METHODS FOR ORBIT PROPAGATION , 1998 .

[3]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[4]  C. Velez,et al.  Notions of analytic vs numerical stability as applied to the numerical calculation of orbits , 1974 .

[5]  Paul E. Nacozy,et al.  The intermediate anomaly , 1977 .

[6]  T. Levi-Civita,et al.  Sur la résolution qualitative du problème restreint des trois corps , 1906 .

[7]  J. Baumgarte,et al.  Numerical stabilization of the differential equations of Keplerian motion , 1972 .

[8]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[9]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[10]  K. F. Sundman,et al.  Mémoire sur le problème des trois corps , 1913 .

[11]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[12]  E. Stiefel Linear And Regular Celestial Mechanics , 1971 .

[13]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[14]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[15]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[16]  Victor Szebehely,et al.  Transformations of the perturbed two-body problem to unperturbed harmonic oscillators , 1983 .

[17]  P. Nacozy Time elements in Keplerian orbital elements , 1981 .