The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits
暂无分享,去创建一个
[1] M. L. Sein-Echaluce,et al. On the Szebehely-bond equation generalized Sundman's transformation for the perturbed two-body problem , 1984 .
[2] Phil Palmer,et al. HIGH PRECISION INTEGRATION METHODS FOR ORBIT PROPAGATION , 1998 .
[3] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[4] C. Velez,et al. Notions of analytic vs numerical stability as applied to the numerical calculation of orbits , 1974 .
[5] Paul E. Nacozy,et al. The intermediate anomaly , 1977 .
[6] T. Levi-Civita,et al. Sur la résolution qualitative du problème restreint des trois corps , 1906 .
[7] J. Baumgarte,et al. Numerical stabilization of the differential equations of Keplerian motion , 1972 .
[8] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[9] Matthew M. Berry,et al. Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .
[10] K. F. Sundman,et al. Mémoire sur le problème des trois corps , 1913 .
[11] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[12] E. Stiefel. Linear And Regular Celestial Mechanics , 1971 .
[13] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .
[14] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[15] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[16] Victor Szebehely,et al. Transformations of the perturbed two-body problem to unperturbed harmonic oscillators , 1983 .
[17] P. Nacozy. Time elements in Keplerian orbital elements , 1981 .