Bicategories of spans as cartesian bicategories

Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg-Moore object and every left adjoint arrow is comonadic.

[1]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[2]  Richard J. Wood,et al.  Duals Invert , 2011, Appl. Categorical Struct..

[3]  R. J. Wood,et al.  Frobenius Objects in Cartesian Bicategories , 2007, 0708.1925.

[4]  Pawel Sobocinski,et al.  Van Kampen Colimits as Bicolimits in Span , 2009, CALCO.

[5]  J. Robin B. Cockett,et al.  Restriction categories III: colimits, partial limits and extensivity , 2007, Mathematical Structures in Computer Science.

[6]  R. Street,et al.  MACKEY FUNCTORS ON COMPACT CLOSED CATEGORIES , 2007, 0706.2922.

[7]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[8]  G. M. Kelly,et al.  Cartesian Bicategories II , 2007 .

[9]  S. Lack,et al.  The formal theory of monads II , 2002 .