Weibull Parameters and the Tensile Strength of Porous Phosphate Glass-Ceramics
暂无分享,去创建一个
[1] G. Seber,et al. Nonlinear Regression: Seber/Nonlinear Regression , 2005 .
[2] R. Rice. Porosity Effects on Machining Direction—Strength Anisotropy and Failure Mechanisms , 1994 .
[3] B. Lawn. Fracture of Brittle Solids by Brian Lawn , 1993 .
[4] F. Pernot,et al. Phosphate glass-ceramic-titanium composite materials , 1991 .
[5] F. Pernot,et al. Glass-ceramic-metal composites for making graded seals in prosthetic devices , 1991 .
[6] D. J. Green,et al. Fracture behavior of open-cell ceramics , 1989 .
[7] R. Rice. Relation of tensile strength-porosity effects in ceramics to porosity dependence of Young's modulus and fracture energy, porosity character and grain size , 1989 .
[8] W. Tyson,et al. On the determination of Weibull parameters , 1988 .
[9] J. D. Sullivan,et al. Experimental probability estimators for Weibull plots , 1986 .
[10] B. Bergman. On the variability of the fracture stress of brittle materials , 1985 .
[11] Roy W. Rice,et al. Pores as fracture origins in ceramics , 1984 .
[12] S. K. Maiti,et al. Fracture toughness of brittle cellular solids , 1984 .
[13] P. Rabischong,et al. Development of phosphate glass-ceramics for bone implants , 1983 .
[14] F. Bonnel,et al. New glass-ceramic materials for prosthetic applications , 1979 .
[15] K. Trustrum,et al. On estimating the Weibull modulus for a brittle material , 1979 .
[16] F. I. Baratta. Stress Intensity Factor Estimates for a Peripherally Cracked Spherical Void and a Hemispherical Surface Pit , 1978 .
[17] Ö. Vardar,et al. Effect of spherical pores on the strength of a polycrystalline ceramic , 1977 .
[18] D. Niesz,et al. Strength-Size Relationships in Ceramic Materials: 1. Investigation of a Commercial Alumina. 2. Effect of Flaw Shape on Strength of Ceramics. , 1975 .
[19] L. J. Bain,et al. Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution , 1970 .
[20] A. Evans,et al. The strength and oxidation of reaction-sintered silicon nitride , 1970 .
[21] R. Davidge,et al. The effective surface energy of brittle materials , 1968 .
[22] D. Hasselman,et al. Micromechanical Stress Concentrations in Two‐Phase Brittle‐Matrix Ceramic Composites , 1967 .
[23] R. Fullman. Measurement of Particle Sizes in Opaque Bodies , 1953 .
[24] R. Sack. Extension of Griffith's theory of rupture to three dimensions , 1946 .
[25] D. J. Green,et al. Strength and Young's Modulus Behavior of a Partially Sintered Porous Alumina , 1995 .
[26] R. Langlois,et al. Estimation of Weibull parameters , 1991 .
[27] P. Boch,et al. Uncertainty on the mean strength and Weibull's modulus of an alumina batch as a function of the number of samples , 1984 .
[28] G. Evansa,et al. セラミックの破壊におよぼす空孔の影響 I 円筒状空孔 , 1979 .
[29] A. Evans,et al. Some Effects of Cavities on the Fracture of Ceramics: I, Cylindrical Cavities , 1979 .
[30] J. G. Kalbfleisch. Probability and Statistical Inference , 1977 .
[31] Kailash C. Kapur,et al. Reliability in engineering design , 1977 .
[32] R. Pabst. Neuere Methoden der Festigkeitsprüfung keramischer Werkstoffe , 1975 .
[33] W. Brown,et al. Plane strain crack toughness testing of high strength metallic materials. , 1966 .
[34] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[35] A. A. Griffith. The Phenomena of Rupture and Flow in Solids , 1921 .
[36] C. Inglis. Stresses in a plate due to the presence of cracks and sharp corners , 1913 .