Weibull Parameters and the Tensile Strength of Porous Phosphate Glass-Ceramics

The strengths of porous phosphate glass-ceramic specimens, with relative densities ranging between 0.25 and 0.50, were measured by four-point bending at room temperature. An analysis of the data, using Weibull statistics, indicated that such a treatment, usually performed on dense ceramics, can also be used on porous materials. In the sets studied, the nature of critical flaws was determined, which led to the proposal of a mechanism of fracture initiation in such porous materials.

[1]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[2]  R. Rice Porosity Effects on Machining Direction—Strength Anisotropy and Failure Mechanisms , 1994 .

[3]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[4]  F. Pernot,et al.  Phosphate glass-ceramic-titanium composite materials , 1991 .

[5]  F. Pernot,et al.  Glass-ceramic-metal composites for making graded seals in prosthetic devices , 1991 .

[6]  D. J. Green,et al.  Fracture behavior of open-cell ceramics , 1989 .

[7]  R. Rice Relation of tensile strength-porosity effects in ceramics to porosity dependence of Young's modulus and fracture energy, porosity character and grain size , 1989 .

[8]  W. Tyson,et al.  On the determination of Weibull parameters , 1988 .

[9]  J. D. Sullivan,et al.  Experimental probability estimators for Weibull plots , 1986 .

[10]  B. Bergman On the variability of the fracture stress of brittle materials , 1985 .

[11]  Roy W. Rice,et al.  Pores as fracture origins in ceramics , 1984 .

[12]  S. K. Maiti,et al.  Fracture toughness of brittle cellular solids , 1984 .

[13]  P. Rabischong,et al.  Development of phosphate glass-ceramics for bone implants , 1983 .

[14]  F. Bonnel,et al.  New glass-ceramic materials for prosthetic applications , 1979 .

[15]  K. Trustrum,et al.  On estimating the Weibull modulus for a brittle material , 1979 .

[16]  F. I. Baratta Stress Intensity Factor Estimates for a Peripherally Cracked Spherical Void and a Hemispherical Surface Pit , 1978 .

[17]  Ö. Vardar,et al.  Effect of spherical pores on the strength of a polycrystalline ceramic , 1977 .

[18]  D. Niesz,et al.  Strength-Size Relationships in Ceramic Materials: 1. Investigation of a Commercial Alumina. 2. Effect of Flaw Shape on Strength of Ceramics. , 1975 .

[19]  L. J. Bain,et al.  Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution , 1970 .

[20]  A. Evans,et al.  The strength and oxidation of reaction-sintered silicon nitride , 1970 .

[21]  R. Davidge,et al.  The effective surface energy of brittle materials , 1968 .

[22]  D. Hasselman,et al.  Micromechanical Stress Concentrations in Two‐Phase Brittle‐Matrix Ceramic Composites , 1967 .

[23]  R. Fullman Measurement of Particle Sizes in Opaque Bodies , 1953 .

[24]  R. Sack Extension of Griffith's theory of rupture to three dimensions , 1946 .

[25]  D. J. Green,et al.  Strength and Young's Modulus Behavior of a Partially Sintered Porous Alumina , 1995 .

[26]  R. Langlois,et al.  Estimation of Weibull parameters , 1991 .

[27]  P. Boch,et al.  Uncertainty on the mean strength and Weibull's modulus of an alumina batch as a function of the number of samples , 1984 .

[28]  G. Evansa,et al.  セラミックの破壊におよぼす空孔の影響 I 円筒状空孔 , 1979 .

[29]  A. Evans,et al.  Some Effects of Cavities on the Fracture of Ceramics: I, Cylindrical Cavities , 1979 .

[30]  J. G. Kalbfleisch Probability and Statistical Inference , 1977 .

[31]  Kailash C. Kapur,et al.  Reliability in engineering design , 1977 .

[32]  R. Pabst Neuere Methoden der Festigkeitsprüfung keramischer Werkstoffe , 1975 .

[33]  W. Brown,et al.  Plane strain crack toughness testing of high strength metallic materials. , 1966 .

[34]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[35]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[36]  C. Inglis Stresses in a plate due to the presence of cracks and sharp corners , 1913 .