Preparation of Hierarchical Micro-Meso Porous Carbon and Carbon Nanofiber from Polyacrylonitrile/Polysulfone Polymer Via One-Step Carbonization for Supercapacitor Electrodes

[1]  A. Ehsani,et al.  Mesoporous ionic liquid functionalized nanozeolite: Synthesis and high efficient material to improving pseudocapacitance performance of conductive polymer , 2022, Journal of Energy Storage.

[2]  Q. Feng,et al.  High-porosity carbon nanofibers prepared from polyacrylonitrile blended with amylose starch for application in supercapacitors , 2022, Materials Chemistry and Physics.

[3]  Zhenhua Wang,et al.  A high-safety electrolyte based on functionalized ionic liquid and polyurethane for lithium batteries , 2022, Electrochimica Acta.

[4]  Xianjie Liu,et al.  Grid Structure Phase Change Composites with Effective Solar/Electro-Thermal Conversion for Multi-Functional Thermal Application , 2022, SSRN Electronic Journal.

[5]  Chongxing Liu,et al.  Energetic variational approach for prediction of thermal electrokinetics in charging and discharging processes of electrical double layer capacitors , 2022, Journal of Power Sources.

[6]  Junxia Cheng,et al.  Investigation of functionalization effect of carbon nanotubes as supercapacitor electrode material on hydrogen evolution side-reaction by scanning electrochemical microscopy , 2022, Electrochimica Acta.

[7]  Nan Li,et al.  Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction reaction: A critical review focus on hydrophilicity/hydrophobicity of carbonaceous electrode , 2022, Chemical Engineering Journal.

[8]  C. Xu,et al.  Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review , 2022, Renewable Energy.

[9]  S. Dsoke,et al.  An asymmetric MnO2|activated carbon supercapacitor with highly soluble choline nitrate-based aqueous electrolyte for sub-zero temperatures , 2022, Electrochimica Acta.

[10]  Shiming Zhang,et al.  Amorphous Carbon Interweaved Mesoporous All-carbon Electrode for Wide-Temperature Range Supercapacitors , 2022, Electrochimica Acta.

[11]  D. Pontiroli,et al.  Asymmetric Supercapacitors Based on Nickel decorated Graphene and Porous Graphene Electrodes , 2022, Electrochimica Acta.

[12]  Yi Yan,et al.  Fabrication of heteroatom-self-doped hierarchical porous carbon from soy protein isolate hydrogel for high-performance supercapacitors via a double-effect strategy of template-activation , 2022, Microporous and Mesoporous Materials.

[13]  Xiaochun Zhou,et al.  Highly Safe, Durable, Adaptable, and Flexible Fuel Cell Using Gel/Sponge Composite Material , 2021, Advanced Energy Materials.

[14]  Quan Feng,et al.  High‐Performance All‐Solid‐State Supercapacitor Electrode Materials Using Freestanding Electrospun Carbon Nanofiber Mats of Polyacrylonitrile and Novolac Blends , 2021 .

[15]  Xiancai Jiang,et al.  Facile synthesis of chitosan derived heteroatoms-doped hierarchical porous carbon for supercapacitors , 2021 .

[16]  Jingli Shi,et al.  Fabrication, structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection , 2021 .

[17]  Tong Lin,et al.  Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance , 2021 .

[18]  Xiaodu Liang,et al.  Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors , 2021 .

[19]  M. Ismael A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles , 2020 .

[20]  Tapas Kuila,et al.  Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors , 2020 .

[21]  Sambit Satpathy,et al.  How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors , 2020, Journal of Energy Storage.

[22]  Zhizhong Chen,et al.  A reconfigurable remotely epitaxial VO2 electrical heterostructure. , 2019, Nano letters.

[23]  Wenyu Wang,et al.  Electrospinning preparation of a large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitors , 2018, RSC advances.

[24]  Tong Lin,et al.  High Performance Supercapacitor Electrode Materials from Electrospun Carbon Nanofibers in Situ Activated by High Decomposition Temperature Polymer , 2018 .

[25]  Siti Kartom Kamarudin,et al.  Recent progress of carbonaceous materials in fuel cell applications: An overview , 2017 .

[26]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[27]  F. Kang,et al.  NH3-activated carbon nanofibers for low-concentration NO removal at room temperature , 2015 .

[28]  N. Barakat,et al.  Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats , 2015 .

[29]  Haiqing Liu,et al.  Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers , 2012 .

[30]  Gang Wang,et al.  Activated carbon nanofiber webs made by electrospinning for capacitive deionization , 2012 .

[31]  T. Aminabhavi,et al.  Polyacrylonitrile-based nanofibers—A state-of-the-art review , 2012 .

[32]  Xungai Wang,et al.  Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials , 2011 .

[33]  J. Jang,et al.  Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent , 2010 .

[34]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[35]  Young Ho Kim,et al.  The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. , 2008, Journal of colloid and interface science.

[36]  Morinobu Endo,et al.  Self‐Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride , 2007 .

[37]  Y. Kim,et al.  Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. , 2007, Small.

[38]  K. Nagata,et al.  Effect of particle size of graphites on electrical conductivity of graphite/polymer composite , 1998 .