Automatic Boundedness of Adjointable Operators on Barreled VH-Spaces

We consider the space of adjointable operators on barreled VH (Vector Hilbert) spaces and show that such operators are automatically bounded. This generalizes the well known corresponding result for locally Hilbert $$C^*$$ C ∗ -modules. We pick a consequence of this result in the dilation theory of VH-spaces and show that, when barreled VH-spaces are considered, a certain boundedness condition for the existence of VH-space linearisations, equivalently, of reproducing kernel VH-spaces, is automatically satisfied.

[1]  V. Paulsen HILBERT C*‐MODULES: A TOOLKIT FOR OPERATOR ALGEBRAISTS (London Mathematical Society Lecture Note Series 210) , 1997 .

[2]  Serdar Ay,et al.  Representations of ⁎-semigroups associated to invariant kernels with values adjointable operators , 2015, 1502.00883.

[3]  M. Oudadess,et al.  On different barrelledness notions in locally convex algebras , 2015 .

[4]  A. Weron Prediction theory in Banach spaces , 1975 .

[5]  Mark Tomforde,et al.  Vector Spaces with an Order Unit , 2007, 0712.2613.

[6]  Marc A. Rieffel,et al.  Induced representations of C∗-algebras , 1974 .

[7]  Hilbert modules over locally C*-algebras , 2000, math/0011053.

[8]  Z. Sebestyén EveryC*-seminorm is automatically submultiplicative , 1979 .

[9]  A. Gheondea Operator Models for Hilbert Locally $C^*$-Modules , 2015, 1507.07643.

[10]  R. Douglas,et al.  Modules over operator algebras , 1983 .

[11]  G. Kasparov HILBERT C?-MODULES: THEOREMS OF STINESPRING AND VOICULESCU , 1980 .

[12]  Konrad Schmüdgen Über LMC-Algebren , 1975 .

[13]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[14]  W. L. Paschke Inner Product Modules Over B ∗ -Algebras , 1973 .

[15]  Linear spaces with an *-algebra-valued inner product , 1980 .

[16]  A. Mallios Hermitian K-theory over topological ∗-algebras , 1985 .

[17]  N. Bourbaki Sur certains espaces vectoriels topologiques , 1950 .

[18]  R. Loynes Some problems arising from spectral analysis , 1967 .

[19]  G. Allan On a Class of Locally Convex Algebras , 1967 .

[20]  R. Loynes On Generalized Positive‐Definite Functions , 1965 .

[21]  N. Phillips Inverse limits of C^*-algebras , 1988 .

[22]  Serdar Ay,et al.  Invariant weakly positive semidefinite kernels with values in topologically ordered $*$-spaces , 2017, Studia Mathematica.

[23]  Serdar Ay,et al.  Representations of *-semigroups associated to invariant kernels with values continuously adjointable operators , 2015, 1507.06840.

[24]  Andrzej Trautman,et al.  Algebras and their Representations , 1988 .