Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials

Abstract We propose a dual indentation technique for the assessment of the cohesion and friction angle of cohesive-frictional materials of the Mohr–Coulomb type. The technique is based on a computational implementation of the yield design theorems applied to conical indentation tests with different apex angles. The upper bound solutions are found to be very close to flat indentation solutions available for cohesive-frictional materials. On this basis we derive fundamental hardness-to-cohesion solutions in function of the friction angle and the apex angle. By studying the property of these dimensionless relations, we show that the ratio of two hardness measurements obtained from indentation tests with different apex angles, allows one to determine the friction angle. This dual indentation method is applied to Berkovich and Corner Cube indenter assimilated to equivalent cones of different apex angle. The method is validated for a ‘model’ material, metallic glass, which has recently been identified as a cohesive-frictional materials. The only input to the method are two hardness values which we obtain by microindentation on metallic glass. The outcome are values of the cohesion and friction angle, which are found to be in excellent agreement with reported cohesion and friction angle values of metallic glass obtained by macroscopic triaxial testing and comprehensive finite-element backanalysis of indentation curves.

[1]  P. Donovan A yield criterion for Pd40Ni40P20 metallic glass , 1989 .

[2]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[3]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[4]  Jean Salençon,et al.  CAPACITE PORTANTE DES FONDATIONS SUPERFICIELLES CIRCULAIRES , 1982 .

[5]  John Lysmer,et al.  LIMIT ANALYSIS OF PLANE PROBLEMS IN SOIL MECHANICS , 1970 .

[6]  Jean Salençon,et al.  Calcul à la rupture et analyse limite , 1983 .

[7]  Johann Michler,et al.  Determination of plastic properties of metals by instrumented indentation using different sharp indenters , 2003 .

[9]  E. Anderheggen,et al.  Finite element limit analysis using linear programming , 1972 .

[10]  Francois P. Ganneau,et al.  From nanohardness to strength properties of cohesive-frictional materials : application to shale materials , 2004 .

[11]  G. Ravichandran,et al.  Pressure-dependent flow behavior of Zr_41.2Ti_13.8Cu_12.5Ni_10Be_22.5 bulk metallic glass , 2003 .

[12]  K. Zeng,et al.  Material characterization based on dual indenters , 2005 .

[13]  Chen Weimin,et al.  A numerical study of indentation using indenters of different geometry , 2004 .

[14]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[15]  Scott W. Sloan,et al.  A steepest edge active set algorithm for solving sparse linear programming problems , 1988 .

[16]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[17]  C. Schuh,et al.  Atomistic basis for the plastic yield criterion of metallic glass , 2003, Nature materials.

[18]  S. Suresh,et al.  Depth-sensing instrumented indentation with dual sharp indenters , 2003 .

[19]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[20]  A. D. Cox Axially-symmetric plastic deformation in soils—II. Indentation of ponderable soils , 1962 .

[21]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[22]  F. Ulm,et al.  On the use of nanoindentation for cementitious materials , 2003 .

[23]  A. DiCarlo,et al.  Semi-inverse method for predicting stress–strain relationship from cone indentations , 2003 .

[24]  S. Mindess,et al.  Characterization of the microstructure and strength of cement paste by microhardness testing , 1996 .

[25]  Yuji Tanabe,et al.  Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles , 2001 .

[26]  D. Tabor Hardness of Metals , 1937, Nature.

[27]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[28]  Subra Suresh,et al.  Study of mechanical deformation in bulk metallic glass through instrumented indentation , 2001 .

[29]  Samuel R. Williams,et al.  Hardness and hardness measurements , 1942 .

[30]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[31]  Christopher A. Schuh,et al.  A survey of instrumented indentation studies on metallic glasses , 2004 .

[32]  D. Tabor A simple theory of static and dynamic hardness , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  K. Bathe Finite Element Procedures , 1995 .

[34]  L. Keer,et al.  Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions , 2004 .

[35]  N. R. Chitkara,et al.  Numerical construction of axisymmetric slip-line fields for indentation of thick blocks by rigid conical indenters and friction at the tool-metal interface , 1992 .

[36]  J.F.W. Bishop,et al.  On the complete solution to problems of deformation of a plastic-rigid material , 1953 .

[37]  F. J. Lockett Indentation of a rigid/plastic material by a conical indenter , 1963 .

[38]  J. Pastor,et al.  Mise en oeuvre numerique des methodes de l'analyse limite pour les materiaux de von mises et de Coulomb standards en deformation plane , 1976 .

[39]  L. Keer,et al.  Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes , 2003 .