Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission

Abstract. In the past decade, lead halide perovskites have emerged as potential optoelectronic materials in the fields of light-emitting diode, solar cell, photodetector, and laser, due to their low-cost synthesis method, tunable bandgap, high quantum yield, large absorption, gain coefficient, and low trap-state densities. In this review, we present a comprehensive discussion of lead halide perovskite applications, with an emphasis on recent advances in synthetic strategies, morphology control, and lasing performance. In particular, the synthetic strategies of solution and vapor progress and the morphology control of perovskite nanocrystals are reviewed. Furthermore, we systematically discuss the latest development of perovskite laser with various fundamental performances, which are highly dependent on the dimension and size of nanocrystals. Finally, considering current challenges and perspectives on the development of lead halide perovskite nanocrystals, we provide an outlook on achieving high-quality lead perovskite lasers and expanding their practical applications.

[1]  J. Hofkens,et al.  Self‐Assembled Organic Microfibers for Nonlinear Optics , 2013, Advanced materials.

[2]  Wei Huang,et al.  Recent Progress in Metal Halide Perovskite Micro‐ and Nanolasers , 2019, Advanced Optical Materials.

[3]  Liyun Zhao,et al.  Research progress of low-dimensional metal halide perovskites for lasing applications , 2018, Chinese Physics B.

[4]  Claudio Canale,et al.  Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range , 2016, Journal of the American Chemical Society.

[5]  Jinlan Wang,et al.  One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. , 2019, The journal of physical chemistry letters.

[6]  Ting Wu,et al.  A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics , 2017, Advanced materials.

[7]  Elsa Garmire,et al.  Nonlinear optics in daily life. , 2013, Optics express.

[8]  P. Ghosh,et al.  Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. , 2017, The journal of physical chemistry letters.

[9]  Behrad Gholipour,et al.  Organometallic Perovskite Metasurfaces , 2017, Advanced materials.

[10]  X. Jiao,et al.  Room temperature colloidal synthesis of CsPbBr3 nanowires with tunable length, width and composition , 2018 .

[11]  Biwu Ma,et al.  A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. , 2015, Chemical communications.

[12]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[13]  Li Ge,et al.  Ultrafast control of vortex microlasers , 2020, Science.

[14]  Qing Liao,et al.  Perovskite Microdisk Microlasers Self‐Assembled from Solution , 2015, Advanced materials.

[15]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[16]  Jasmina A. Sichert,et al.  Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications , 2016 .

[17]  A. Rogach,et al.  Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications , 2020 .

[18]  Yi Yu,et al.  Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. , 2015, Journal of the American Chemical Society.

[19]  Y. Zhao,et al.  Materials chemistry and engineering in metal halide perovskite lasers. , 2020, Chemical Society reviews.

[20]  L. Wan,et al.  Polar Solvent Induced Lattice Distortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. , 2018, Journal of the American Chemical Society.

[21]  W. Hu,et al.  Perovskite Photodetectors based on CH3 NH3 PbI3 Single Crystals. , 2016, Chemistry, an Asian journal.

[22]  Qing Zhang,et al.  Enhanced Optical Absorption and Slowed Light of Reduced-Dimensional CsPbBr3 Nanowire Crystal by Exciton Polariton. , 2020, Nano letters.

[23]  Anton Autere,et al.  Nonlinear Optics with 2D Layered Materials , 2018, Advanced materials.

[24]  T. Saito,et al.  Confinement-enhanced stimulated emission in microcrystalline CsPbCl3 films grown from the amorphous phase , 2005 .

[25]  Minsu Jung,et al.  Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. , 2019, Chemical Society reviews.

[26]  Wei Huang,et al.  Two‐Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates , 2017 .

[27]  T. Qiu,et al.  Recent advances in one-dimensional halide perovskites for optoelectronic applications. , 2018, Nanoscale.

[28]  K. Hong,et al.  Localized surface plasmon for enhanced lasing performance in solution-processed perovskites. , 2016, Optics express.

[29]  L. Manna,et al.  Colloidal Synthesis of Strongly Fluorescent CsPbBr3 Nanowires with Width Tunable down to the Quantum Confinement Regime , 2016, Chemistry of materials : a publication of the American Chemical Society.

[30]  Y. Leng,et al.  Enhanced single-mode lasers of all-inorganic perovskite nanocube by localized surface plasmonic effect from Au nanoparticles , 2019, Journal of Luminescence.

[31]  Shaohua Shen,et al.  Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2017, Nano letters.

[32]  Oleksandr Voznyy,et al.  Perovskite Thin Films via Atomic Layer Deposition , 2015, Advanced materials.

[33]  G. Ran,et al.  Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands , 2017 .

[34]  Liyun Zhao,et al.  Advances in Small Perovskite‐Based Lasers , 2017 .

[35]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[36]  A. Zaban,et al.  Third-Order Optical Nonlinearities in Organometallic Methylammonium Lead Iodide Perovskite Thin Films , 2016 .

[37]  A. Rogach,et al.  Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shape‐Controlled Synthesis , 2019, Angewandte Chemie.

[38]  A. Pan,et al.  Ultrahigh Quality Upconverted Single‐Mode Lasing in Cesium Lead Bromide Spherical Microcavity , 2018, Advanced Optical Materials.

[39]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[40]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[41]  Zhiyong Wu,et al.  Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires , 2017 .

[42]  Kuan-Wei Lee,et al.  Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. , 2020, ACS nano.

[43]  Yuxin Leng,et al.  Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser. , 2018, ACS nano.

[44]  Y. Leng,et al.  Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Formamidinium Lead Bromine Nanocrystals , 2019, ACS Photonics.

[45]  Jiang Tang,et al.  Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. , 2017, Nanoscale.

[46]  Jeannette M. Kadro,et al.  Temperature dependent two-photon photoluminescence of CH3NH3PbBr3: structural phase and exciton to free carrier transition , 2018 .

[47]  P. Beaud,et al.  THz Generation and Detection by Fluorenone Based Organic Crystals , 2018 .

[48]  Haibo Zeng,et al.  Amino‐Mediated Anchoring Perovskite Quantum Dots for Stable and Low‐Threshold Random Lasing , 2017, Advanced materials.

[49]  Y. Leng,et al.  Perovskite CsPb2Br5 Microplate Laser with Enhanced Stability and Tunable Properties , 2017 .

[50]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[51]  S. Xiao,et al.  Micro‐ and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices , 2020, Advanced materials.

[52]  Nan Zhang,et al.  High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. , 2016, The journal of physical chemistry letters.

[53]  Qingsheng Zeng,et al.  Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing , 2016, Advanced science.

[54]  Y. Leng,et al.  Advances in inorganic and hybrid perovskites for miniaturized lasers , 2020 .

[55]  Qing Zhang,et al.  Strong Exciton-Photon Coupling and lasing behavior in All-Inorganic CsPbBr3 Micro/nanowire Fabry-Perot cavity , 2017, 1711.04919.

[56]  A. Rowan,et al.  Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures. , 2015, Small.

[57]  Zhang Jiang,et al.  In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. , 2018, Nanoscale.

[58]  X. Bu,et al.  Halide Perovskites for Nonlinear Optics , 2019, Advanced materials.

[59]  A. Pan,et al.  Space‐Confined Synthesis of 2D All‐Inorganic CsPbI3 Perovskite Nanosheets for Multiphoton‐Pumped Lasing , 2018, Advanced Optical Materials.

[60]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[61]  Daqin Chen,et al.  Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications , 2019, Journal of Materials Chemistry C.

[62]  Youn Jung Park,et al.  Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. , 2020, ACS nano.

[63]  S. Xiao,et al.  Nonlinear Holographic All-Dielectric Metasurfaces. , 2018, Nano letters.

[64]  Akriti,et al.  Two-dimensional halide perovskite nanomaterials and heterostructures. , 2018, Chemical Society reviews.

[65]  Aaron J. Rossini,et al.  The Surface Chemistry and Structure of Colloidal Lead Halide Perovskite Nanocrystals. , 2021, Accounts of chemical research.

[66]  Y. Leng,et al.  High Efficiency Up‐Conversion Random Lasing from Formamidinium Lead Bromide/Amino‐Mediated Silica Spheres Composites , 2020, Advanced Optical Materials.

[67]  Liyuan Han,et al.  Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers , 2020, Science China Chemistry.

[68]  Shang Sun,et al.  All-Dielectric Full-Color Printing with TiO2 Metasurfaces. , 2017, ACS nano.

[69]  Y. Leng,et al.  Robust Cesium Lead Halide Perovskite Microcubes for Frequency Upconversion Lasing , 2017 .

[70]  Xinfeng Liu,et al.  Morphology‐Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices , 2018, Advanced Optical Materials.

[71]  J. Yao,et al.  Organic-Inorganic Hybrid Perovskite Nanowire Laser Arrays. , 2017, ACS nano.

[72]  A. Nurmikko,et al.  Stable Green Perovskite Vertical-Cavity Surface-Emitting Lasers on Rigid and Flexible Substrates , 2017 .

[73]  S. Xiao,et al.  Maskless Fabrication of Aluminum Nanoparticles for Plasmonic Enhancement of Lead Halide Perovskite Lasers , 2017 .

[74]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[75]  H. Atwater,et al.  Upconversion Plasmonic Lasing from an Organolead Trihalide Perovskite Nanocrystal with Low Threshold , 2020, ACS Photonics.

[76]  A. Zaban,et al.  Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications. , 2016, Accounts of chemical research.

[77]  T. Saito,et al.  High intensity photoluminescence of microcrystalline CsPbBr3 films: Evidence for enhanced stimulated emission at room temperature , 2007 .

[78]  S. Lan,et al.  Optically‐Controlled Quantum Size Effect in a Hybrid Nanocavity Composed of a Perovskite Nanoparticle and a Thin Gold Film , 2021, Laser & Photonics Reviews.

[79]  S. Xiao,et al.  Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding , 2019, Nature Communications.

[80]  P. Heremans,et al.  Inorganic and Layered Perovskites for Optoelectronic Devices , 2019, Advanced materials.

[81]  Hongxing Dong,et al.  Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire , 2020 .

[82]  Peidong Yang,et al.  Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires Through Anion‐Exchange Reactions. , 2016 .

[83]  H. Asada,et al.  Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation , 2004 .

[84]  Xingqi Ji,et al.  Record‐Low‐Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite , 2018, Advanced Functional Materials.

[85]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[86]  S. Makarov,et al.  Single-particle perovskite lasers: from material properties to cavity design , 2020, Nanophotonics.

[87]  W. Yin,et al.  Thermodynamic Stability Trend of Cubic Perovskites. , 2017, Journal of the American Chemical Society.

[88]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[89]  V. Ardizzone,et al.  Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature , 2018, Science Advances.

[90]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[91]  Edward H. Sargent,et al.  Solution-processed semiconductors for next-generation photodetectors , 2017 .

[92]  Zhijun Li,et al.  General Strategy for the Growth of CsPbX3 (X = Cl, Br, I) Perovskite Nanosheets from the Assembly of Nanorods , 2018 .

[93]  A. Pan,et al.  Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing , 2017, Nano Research.

[94]  P. Yang,et al.  Two-Step Patterning of Scalable All-Inorganic Halide Perovskite Arrays. , 2020, ACS nano.

[95]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[96]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[97]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[98]  S. Banerjee,et al.  Ligand-Mediated Modulation of Layer Thicknesses of Perovskite Methylammonium Lead Bromide Nanoplatelets , 2016 .

[99]  Tze Chien Sum,et al.  Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. , 2015, Nano letters.

[100]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[101]  B. Monserrat,et al.  Highly Efficient Blue‐Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping , 2020, Advanced science.

[102]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[103]  Q. Akkerman,et al.  Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets. , 2017, The journal of physical chemistry letters.

[104]  Atula S. D. Sandanayaka,et al.  Stable room-temperature continuous-wave lasing in quasi-2D perovskite films , 2020, Nature.

[105]  Shuangchun Wen,et al.  Molecular nonlinear optics: recent advances and applications , 2016 .

[106]  H. Zeng,et al.  Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. , 2016, Nano letters.

[107]  Liyun Zhao,et al.  Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness , 2019, Advanced materials.

[108]  Caofeng Pan,et al.  Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. , 2019, Science bulletin.

[109]  Xiao-Fang Jiang,et al.  Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. , 2019, Nanoscale.

[110]  Yuri S. Kivshar,et al.  Multifold Emission Enhancement in Nanoimprinted Hybrid Perovskite Metasurfaces , 2017 .

[111]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[112]  H. Fu,et al.  Tunable Halide Perovskites for Miniaturized Solid‐State Laser Applications , 2019, Advanced Optical Materials.

[113]  Bing Li,et al.  Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. , 2015, Nanoscale.

[114]  A Paul Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[115]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[116]  Y. Chai,et al.  Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene , 2018 .

[117]  Zhengdong Cheng,et al.  Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics , 2019, Journal of Materials Science.

[118]  M. Grätzel,et al.  Solution‐Processed Tin‐Based Perovskite for Near‐Infrared Lasing , 2016, Advanced materials.

[119]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[120]  Cunlong Li,et al.  Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application , 2017 .

[121]  S. Xiao,et al.  Lead Halide Perovskite‐Based Dynamic Metasurfaces , 2019, Laser & Photonics Reviews.

[122]  U. Schubert,et al.  Agrivoltaics—The Perfect Fit for the Future of Organic Photovoltaics , 2020, Advanced Energy Materials.

[123]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[124]  Liyun Zhao,et al.  Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr3 Perovskite Laser. , 2020, Nano letters.

[125]  Xiaohong Li,et al.  Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films , 2020 .

[126]  D. Ballarini,et al.  Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites , 2018, ACS Photonics.

[127]  M. Saidaminov,et al.  The In‐Gap Electronic State Spectrum of Methylammonium Lead Iodide Single‐Crystal Perovskites , 2016, Advanced materials.

[128]  Lih Y. Lin,et al.  CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability , 2017 .

[129]  L. Etgar,et al.  Tunable Length and Optical Properties of CsPbX3 (X = Cl, Br, I) Nanowires with a Few Unit Cells. , 2017, Nano letters.

[130]  T. Xu,et al.  Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. , 2017, ACS nano.

[131]  Haibo Zeng,et al.  Solution‐Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All‐Inorganic Perovskite Nanocrystals , 2017 .

[132]  Yu Tong,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.

[133]  Dong Shi,et al.  Two-Photon Absorption in Organometallic Bromide Perovskites. , 2015, ACS nano.

[134]  Aifei Wang,et al.  Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. , 2016, ACS nano.

[135]  Edward H Sargent,et al.  Conformal organohalide perovskites enable lasing on spherical resonators. , 2014, ACS nano.

[136]  Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets. , 2017, Nano letters.

[137]  Chung‐Hsin Lu,et al.  Structural, morphological and thermodynamic parameters investigation of tunable MAPb1−xCdxBr3–2xI2x hybrid perovskite , 2021, Journal of Alloys and Compounds.

[138]  Hongxing Dong,et al.  Linearly polarized lasing based on coupled perovskite microspheres. , 2020, Nanoscale.

[139]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[140]  S. Johnston,et al.  Gallium arsenide solar cells grown at rates exceeding 300 µm h−1 by hydride vapor phase epitaxy , 2019, Nature Communications.

[141]  Zhaoquan Yao,et al.  Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens , 2018 .

[142]  Rui Wang,et al.  Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. , 2018, Small.

[143]  Y. Leng,et al.  Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere. , 2019, Optics express.

[144]  Ruxin Li,et al.  Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. , 2021, ACS nano.

[145]  Bin Su,et al.  “Liquid Knife” to Fabricate Patterning Single‐Crystalline Perovskite Microplates toward High‐Performance Laser Arrays , 2016, Advanced materials.

[146]  Qiang Wu,et al.  Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. , 2016, Nanoscale.

[147]  Jia Zhu,et al.  All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant , 2020, Nature Energy.

[148]  Chuang Zhang,et al.  Wettability‐Guided Screen Printing of Perovskite Microlaser Arrays for Current‐Driven Displays , 2020, Advanced materials.

[149]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[150]  Tze Chien Sum,et al.  Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High‐Performance Perovskite Solar Cells and Optoelectronic Devices , 2014 .

[151]  Zhenlin Wang,et al.  Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. , 2016, Nano letters.

[152]  Chunlei Guo,et al.  Strong nonlinear absorption in perovskite films , 2018 .

[153]  In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon , 2014, Nature photonics.

[154]  Y. Leng,et al.  Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates , 2020 .

[155]  Wen-Hau Zhang,et al.  Long-term stability of organic–inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions , 2017 .

[156]  Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires. , 2017, Nano letters.

[157]  Tian Jiang,et al.  Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets. , 2017, Optics letters.

[158]  J. Noh,et al.  Rational Strategies for Efficient Perovskite Solar Cells. , 2016, Accounts of chemical research.

[159]  P. Prasad,et al.  Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities , 2019, Physics Reports.

[160]  Atula S. D. Sandanayaka,et al.  Triplet management for efficient perovskite light-emitting diodes , 2020, Nature Photonics.

[161]  Qing Zhang,et al.  Surface‐Plasmon‐Assisted Metal Halide Perovskite Small Lasers , 2019, Advanced Optical Materials.

[162]  Xiaoyang Zhu,et al.  Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2016, ACS nano.

[163]  A. Pan,et al.  Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. , 2017, ACS nano.

[164]  Ji-Xin Cheng,et al.  Multimodal nonlinear optical microscopy , 2011, Laser & photonics reviews.

[165]  N. Yao,et al.  Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes , 2018, Nano Energy.

[166]  Wenping Hu,et al.  Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites , 2018 .

[167]  Paul Meredith,et al.  Organohalide Perovskites for Solar Energy Conversion. , 2016, Accounts of chemical research.

[168]  A. Samanta,et al.  Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals. , 2018, Optics Letters.

[169]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[170]  Cheng Sun,et al.  Temperature-Dependent Lasing of CsPbI3 Triangular Pyramid. , 2019, The journal of physical chemistry letters.

[171]  H. Hsu,et al.  Room-Temperature Near-Infrared Random Lasing with Tin-Based Perovskites Prepared by CVD Processing , 2021 .

[172]  H. Zeng,et al.  Field-Effect Transistors Based on van-der-Waals-Grown and Dry-Transferred All-Inorganic Perovskite Ultrathin Platelets. , 2017, The journal of physical chemistry letters.

[173]  A. Zakhidov,et al.  Nanoimprinted perovskite metasurface for enhanced photoluminescence. , 2017, Optics express.

[174]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[175]  Yuerui Lu,et al.  Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application. , 2016, ACS nano.

[176]  Zongping Shao,et al.  Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. , 2015, Chemical Society reviews.

[177]  Jiang Tang,et al.  Stable Two-Photon Pumped Amplified Spontaneous Emission from Millimeter-Sized CsPbBr3 Single Crystals. , 2019, The journal of physical chemistry letters.

[178]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[179]  J. Berry,et al.  Choose Your Own Adventure: Fabrication of Monolithic All‐Perovskite Tandem Photovoltaics , 2020, Advanced materials.

[180]  Zhiqun Lin,et al.  Large‐Area Lasing and Multicolor Perovskite Quantum Dot Patterns , 2018, Advanced Optical Materials.

[181]  Qing Zhang,et al.  Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity , 2020, ACS Photonics.