Geometric Ergodicity and Hybrid Markov Chains
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] D. Vere-Jones. GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINS , 1962 .
[3] B. Jamison,et al. Contributions to Doeblin's theory of Markov processes , 1967 .
[4] J. Kingman. Random Processes , 2019, Nature.
[5] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[6] S. Orey. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .
[7] C J Isham,et al. Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .
[8] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[9] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[10] R. Tweedie,et al. Geometric Ergodicity and R-positivity for General Markov Chains , 1978 .
[11] R. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .
[12] René Carmona,et al. Exponential Moments for Hitting Times of Uniformly Ergodic Markov Processes , 1983 .
[13] E. Nummelin. General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .
[14] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[15] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[16] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[17] Upendra Dave,et al. Applied Probability and Queues , 1987 .
[18] A. W. Kemp,et al. Applied Probability and Queues , 1989 .
[19] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[20] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[21] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[22] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[23] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[24] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[25] J. Rosenthal,et al. Rates of convergence for everywhere-positive Markov chains , 1995 .
[26] Jeffrey S. Rosenthal,et al. RATES OF CONVERGENCE FOR EVERYWHERE-POSITIVE MARKOV , 1995 .
[27] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[28] W. Wefelmeyer,et al. Outperforming the Gibbs sampler empirical estimator for nearest-neighbor random fields , 1996 .
[29] Y. Derriennic,et al. Sur le théorème limite central de Kipnis et Varadhan pour les chaînes réversibles ou normales , 1996 .
[30] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .