Geometric Ergodicity and Hybrid Markov Chains

Various notions of geometric ergodicity for Markov chains on general state spaces exist. In this paper, we review certain relations and implications among them. We then apply these results to a collection of chains commonly used in Markov chain Monte Carlo simulation algorithms, the so-called hybrid chains. We prove that under certain conditions, a hybrid chain will "inherit" the geometric ergodicity of its constituent parts.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  D. Vere-Jones GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINS , 1962 .

[3]  B. Jamison,et al.  Contributions to Doeblin's theory of Markov processes , 1967 .

[4]  J. Kingman Random Processes , 2019, Nature.

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  S. Orey Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .

[7]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  R. Tweedie,et al.  Geometric Ergodicity and R-positivity for General Markov Chains , 1978 .

[11]  R. Bhattacharya On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .

[12]  René Carmona,et al.  Exponential Moments for Hitting Times of Uniformly Ergodic Markov Processes , 1983 .

[13]  E. Nummelin General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .

[14]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[15]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[16]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[17]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[18]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[19]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[20]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[21]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[22]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[23]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[24]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[25]  J. Rosenthal,et al.  Rates of convergence for everywhere-positive Markov chains , 1995 .

[26]  Jeffrey S. Rosenthal,et al.  RATES OF CONVERGENCE FOR EVERYWHERE-POSITIVE MARKOV , 1995 .

[27]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[28]  W. Wefelmeyer,et al.  Outperforming the Gibbs sampler empirical estimator for nearest-neighbor random fields , 1996 .

[29]  Y. Derriennic,et al.  Sur le théorème limite central de Kipnis et Varadhan pour les chaînes réversibles ou normales , 1996 .

[30]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .