The Status Gradient of Trends in Social Media

An active line of research has studied the detection and representation of trends in social media content. There is still relatively little understanding, however, of methods to characterize the early adopters of these trends: who picks up on these trends at different points in time, and what is their role in the system? We develop a framework for analyzing the population of users who participate in trending topics over the course of these topics' lifecycles. Central to our analysis is the notion of a "status gradient", describing how users of different activity levels adopt a trend at different points in time. Across multiple datasets, we find that this methodology reveals key differences in the nature of the early adopters in different domains.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  G. Simmel The sociology of Georg Simmel , 1950 .

[3]  Everett M. Rogers,et al.  Characteristics of agricultural innovators and other adopter categories , 1961 .

[4]  Paul J. Deutschmann,et al.  Communication and adoption patterns in an Andean village. , 1962 .

[5]  M. Becker,et al.  Sociometric Location and Innovativeness: Reformulation and Extension of the Diffusion Model , 1970 .

[6]  R. Daft A Dual-Core Model of Organizational Innovation , 1978 .

[7]  M. Mclaughlin The Rand Change Agent Study Revisited: Macro Perspectives and Micro Realities , 1990 .

[8]  Lori Rosenkopf,et al.  Social Network Effects on the Extent of Innovation Diffusion: A Computer Simulation , 1997 .

[9]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[10]  J. Kleinberg Bursty and Hierarchical Structure in Streams , 2002, Data mining and knowledge discovery.

[11]  F. Pampel,et al.  Inequality, Diffusion, and the Status Gradient in Smoking , 2002 .

[12]  Ravi Kumar,et al.  On the Bursty Evolution of Blogspace , 2003, WWW '03.

[13]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[14]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[15]  Jon Kleinberg,et al.  Traffic-based feedback on the web , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[17]  Eytan Adar,et al.  Implicit Structure and the Dynamics of Blogspace , 2004 .

[18]  Jon M. Kleinberg,et al.  Bursty and Hierarchical Structure in Streams , 2002, Data Mining and Knowledge Discovery.

[19]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[20]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[21]  Didier Sornette,et al.  Robust dynamic classes revealed by measuring the response function of a social system , 2008, Proceedings of the National Academy of Sciences.

[22]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[23]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[24]  Marina Apaydin,et al.  A Multi-Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature , 2010 .

[25]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[26]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[27]  T. Valente Network Interventions , 2012, Science.

[28]  Georgios Zervas,et al.  The groupon effect on yelp ratings: a root cause analysis , 2012, EC '12.

[29]  Daniel G. Goldstein,et al.  The structure of online diffusion networks , 2012, EC '12.

[30]  Lada A. Adamic,et al.  The Anatomy of Large Facebook Cascades , 2013, ICWSM.

[31]  Jure Leskovec,et al.  No country for old members: user lifecycle and linguistic change in online communities , 2013, WWW.

[32]  Jure Leskovec,et al.  From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews , 2013, WWW.

[33]  Lillian Lee,et al.  All Who Wander: On the Prevalence and Characteristics of Multi-community Engagement , 2015, WWW.

[34]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..