Bio-PEPA: A framework for the modelling and analysis of biological systems

In this work we present Bio-PEPA, a process algebra for the modelling and the analysis of biochemical networks. It is a modification of PEPA, originally defined for the performance analysis of computer systems, in order to handle some features of biological models, such as stoichiometry and the use of general kinetic laws. Bio-PEPA may be seen as an intermediate, formal, compositional representation of biological systems, on which different kinds of analyses can be carried out. Bio-PEPA is enriched with some notions of equivalence. Specifically, the isomorphism and strong bisimulation for PEPA have been considered and extended to our language. Finally, we show the translation of a biological model into the new language and we report some analysis results.

[1]  D. Gillespie,et al.  Accelerated stochastic simulation of the stiff enzyme-substrate reaction. , 2005, The Journal of chemical physics.

[2]  Stephen Gilmore,et al.  Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA , 2006, Trans. Comp. Sys. Biology.

[3]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[4]  Federica Ciocchetta The BlenX Language with Biological Transactions , 2008, Trans. Comp. Sys. Biology.

[5]  Corrado Priami,et al.  Biological Transactions for Quantitative Models , 2007, Electron. Notes Theor. Comput. Sci..

[6]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[7]  Corrado Priami,et al.  The BlenX Language: A Tutorial , 2008, SFM.

[8]  Corrado Priami,et al.  Beta-binders with Biological Transactions , 2006 .

[9]  S. Gilmore,et al.  Automatically deriving ODEs from process algebra models of signalling pathways , 2005 .

[10]  Alberto Policriti,et al.  Hybrid Systems and Biology , 2008, SFM.

[11]  David R. Gilbert,et al.  Analysis of Signalling Pathways Using Continuous Time Markov Chains , 2006, Trans. Comp. Sys. Biology.

[12]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[13]  Christel Baier,et al.  Approximate Symbolic Model Checking of Continuous-Time Markov Chains , 1999, CONCUR.

[14]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[15]  A. Kierzek,et al.  Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. , 2004, Biophysical journal.

[16]  James W. Haefner,et al.  Modeling Biological Systems , 1996, Springer US.

[17]  Adam Duguid,et al.  Stronger Computational Modelling of Signalling Pathways Using Both Continuous and Discrete-State Methods , 2006, CMSB.

[18]  D. Herries Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems: By Irwin H. Segel. John Wiley & Sons, 1975. pp xxii + 957. Boards, £15.00 , 1976 .

[19]  Nil Geisweiller,et al.  Relating continuous and discrete PEPA models of signalling pathways , 2008, Theor. Comput. Sci..

[20]  Jane Hillston,et al.  Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks , 2007, FBTC@CONCUR.

[21]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[22]  Corrado Priami,et al.  The Beta Workbench , 2007 .

[23]  Paola Lecca,et al.  A Stochastic Process Algebra Approach to Simulation of Autoreactive Lymphocyte Recruitment , 2004, Simul..

[24]  M Hucka,et al.  Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. , 2004, Systems biology.

[25]  Alberto Policriti,et al.  Modeling Biological Systems in Stochastic Concurrent Constraint Programming , 2008, Constraints.

[26]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[27]  Maria Luisa Guerriero,et al.  Modelling Biological Compartments in Bio-PEPA , 2008, MeCBIC.

[28]  Corrado Priami,et al.  Modeling Kohn Interaction Maps with Beta-Binders: An Example , 2005, Trans. Comp. Sys. Biology.

[29]  Vincent Danos,et al.  Formal Molecular Biology Done in CCS-R , 2007, Electron. Notes Theor. Comput. Sci..

[30]  Cosimo Laneve,et al.  A Simple Calculus for Proteins and Cells , 2007, Electron. Notes Theor. Comput. Sci..

[31]  Kwang-Hyun Cho,et al.  Modeling and simulation of intracellular dynamics: choosing an appropriate framework , 2004, IEEE Transactions on NanoBioscience.

[32]  Robert K. Brayton,et al.  Verifying Continuous Time Markov Chains , 1996, CAV.

[33]  Vincent Danos,et al.  Formal Molecular Biology done in CCS , 2003 .

[34]  Alberto Policriti,et al.  Stochastic Concurrent Constraint Programming and Differential Equations , 2007, QAPL.

[35]  J J Collins,et al.  A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[37]  R. Bundschuh,et al.  Fluctuations and slow variables in genetic networks. , 2003, Biophysical Journal.

[38]  Hamid Bolouri,et al.  Dizzy: Stochastic Simulation of Large-scale Genetic Regulatory Networks , 2005, J. Bioinform. Comput. Biol..

[39]  Vincent Danos,et al.  Scalable Simulation of Cellular Signaling Networks , 2007, APLAS.

[40]  Vincent Danos,et al.  Abstract Interpretation of Cellular Signalling Networks , 2008, VMCAI.

[41]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[42]  Corrado Priami,et al.  Modelling and simulation of biological processes in BlenX , 2008, PERV.

[43]  Joachim Niehren,et al.  Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch , 2006, Trans. Comp. Sys. Biology.

[44]  Vincent Danos,et al.  Rule-Based Modelling of Cellular Signalling , 2007, CONCUR.

[45]  François Fages,et al.  Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM , 2002 .

[46]  A Goldbeter,et al.  A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[48]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[49]  M. Kanehisa A database for post-genome analysis. , 1997, Trends in genetics : TIG.

[50]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[51]  Stephen Gilmore,et al.  Integrated Simulation and Model-Checking for the Analysis of Biochemical Systems , 2009, Electron. Notes Theor. Comput. Sci..

[52]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[53]  Muffy Calder,et al.  Some Investigations Concerning the CTMC and the ODE Model Derived From Bio-PEPA , 2009, FBTC@ICALP.