Characterization of human visual sensitivity for video imaging applications

Abstract Spatio-temporal pattern sensitivity has been studied by means of psychophysical tests on five subjects. The study has been undertaken to characterize human visual perception of typical coding artifacts of video sequences. The paper presents the experiments that have been carried out and the particular stimuli used for the study. The characteristics of human vision inferred from the experiments are used to parameterize a proposed spatio-temporal vision model.

[1]  J. L. Hall Hybrid adaptive procedure for estimation of psychometric functions. , 1980, The Journal of the Acoustical Society of America.

[2]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[3]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[4]  A B Watson,et al.  Perceptual-components architecture for digital video. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[5]  J. L. Hall,et al.  A procedure for detecting variability of psychophysical thresholds. , 1983, The Journal of the Acoustical Society of America.

[6]  R. F. Hess,et al.  Temporal properties of human visual filters: number, shapes and spatial covariation , 1992, Vision Research.

[7]  C. Lambrecht Perceptual models and architectures for video coding applications , 1996 .

[8]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[9]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[10]  C. A. Burbeck,et al.  Spatiotemporal characteristics of visual mechanisms: excitatory-inhibitory model. , 1980, Journal of the Optical Society of America.

[11]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[12]  A. Watson Probability summation over time , 1979, Vision Research.

[13]  M. M. Taylor,et al.  PEST: Efficient Estimates on Probability Functions , 1967 .

[14]  A. T. Smith,et al.  Two temporal channels or three? A re-evaluation , 1992, Vision Research.

[15]  P. Ferrelle Recursive block coding for image data compression , 1990 .

[16]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Proceedings of 1st International Conference on Image Processing.

[17]  Andrew B. Watson,et al.  DCTune: A TECHNIQUE FOR VISUAL OPTIMIZATION OF DCT QUANTIZATION MATRICES FOR INDIVIDUAL IMAGES. , 1993 .

[18]  D. Tolhurst Sustained and transient channels in human vision , 1975, Vision Research.

[19]  A. J. Ahumada,et al.  Image Discrimination Models for Object Detection in Natural Backgrounds , 2000 .

[20]  Patrick C. Teo,et al.  A model of perceptual image fidelity , 1995, Proceedings., International Conference on Image Processing.

[21]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[22]  C D Creelman,et al.  PEST reduces bias in forced choice psychophysics. , 1983, The Journal of the Acoustical Society of America.

[23]  E. M. Lowry,et al.  Sine-Wave Response of the Visual System. II. Sine-Wave and Square-Wave Contrast Sensitivity*† , 1962 .

[24]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Andrew B. Watson,et al.  The cortex transform: rapid computation of simulated neural images , 1987 .

[26]  H. Wilson Spatiotemporal characterization of a transient mechanism in the human visual system , 1980, Vision Research.

[27]  J. M. H. du Buf Modelling spatial vision at the threshold level. , 1992 .