A fractional step θ-method approximation of time-dependent viscoelastic fluid flow

A fractional step @q-method for the approximation of time-dependent viscoelastic fluid flow equations is described and analyzed in this article. The algorithm uses substeps within a time step to sequentially update velocity, pressure, and stress. This lagged approach to temporal integration requires a resolution of smaller systems than a fully implicit approach while achieving a second order temporal accuracy. We establish a priori error estimates for our scheme, and provide numerical computations to support the theoretical results and demonstrate the capability of this method.

[1]  P. Kloucek,et al.  Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .

[2]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  穆君,et al.  NUMERICAL ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW , 2004 .

[4]  Dominique Sandri Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds: continuous approximation of the stress , 1994 .

[5]  Marcel Crochet,et al.  Hermitian Finite-elements for Calculating Viscoelastic Flow , 1986 .

[6]  E. Fernández-Cara,et al.  Mathematical Modeling and Analysis of Viscoelastic Fluids of the Oldroyd Kind , 2002 .

[7]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[8]  M. Crochet,et al.  A new mixed finite element for calculating viscoelastic flow , 1987 .

[9]  P. Saramito,et al.  A new $\theta $ -scheme algorithm and incompressible FEM for viscoelastic fluid flows , 1994 .

[10]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[11]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[12]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[13]  D. Segalman,et al.  A model for viscoelastic fluid behavior which allows non-affine deformation , 1977 .

[14]  J. C. Chrispell,et al.  A fractional step θ-method for viscoelastic fluid flow using a SUPG approximation , 2007 .

[15]  H. Giesekus A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility , 1982 .

[16]  Norbert Heuer,et al.  Approximation of time‐dependent, viscoelastic fluid flow: Crank‐Nicolson, finite element approximation , 2004 .

[17]  J. C. Chrispell,et al.  Numerical analysis of a fractional step theta-method for fluid flow problems , 2008 .

[18]  Robert C. Armstrong,et al.  Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations , 1999 .

[19]  Jacques Baranger,et al.  Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method , 1997 .

[20]  Vincent J. Ervin,et al.  Approximation of Time-Dependent Viscoelastic Fluid Flow: SUPG Approximation , 2003, SIAM J. Numer. Anal..

[21]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[22]  A. B. Metzner,et al.  Development of constitutive equations for polymeric melts and solutions , 1963 .

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  Mohamed Bensaada,et al.  Error estimates for a stabilized finite element method for the Oldroyd B model , 2007 .

[25]  P. Saramito,et al.  Efficient simulation of nonlinear viscoelastic fluid flows , 1995 .

[26]  Allan J. Acosta,et al.  Fluid Flow: A First Course in Fluid Mechanics , 1989 .

[27]  J. Périaux,et al.  Numerical methods for nonlinear problem in fluid dynamics , 1987 .

[28]  Jacques Baranger,et al.  Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds , 1992 .

[29]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[30]  Patrick Penel,et al.  Mathematical fluid mechanics : recent results and open questions , 2001 .

[31]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[32]  A. Machmoum,et al.  Finite element approximation of viscoelastic fluid flow using characteristics method , 2001 .

[33]  Marco Dressler,et al.  Computational Rheology , 2002 .

[34]  Vincent J. Ervin,et al.  A Fractional Step Theta-Method for Viscoelastic Fluid Flow Using a UPG Approximation , 2007 .

[35]  V. Ervin,et al.  A fractional step ?-method for convectiondiffusion problems , 2007 .

[36]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[37]  T. Phillips,et al.  Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .

[38]  Marco Picasso,et al.  Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow , 2007, Numerische Mathematik.

[39]  Volker John,et al.  Large Eddy Simulation of Turbulent Incompressible Flows - Analytical and Numerical Results for a Class of LES Models , 2003, Lecture Notes in Computational Science and Engineering.

[40]  J. G. Oldroyd,et al.  Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.